Evolution of pore structure in the Upper Cretaceous Second White Speckled Shale during thermal maturation: Insights from artificial and naturally matured samples

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Geology Pub Date : 2025-02-19 DOI:10.1016/j.coal.2025.104728
Haiping Huang , Hong Zhang , Zhongliang Ma , Xiangrong Yang , Yong Ma , Lunju Zheng
{"title":"Evolution of pore structure in the Upper Cretaceous Second White Speckled Shale during thermal maturation: Insights from artificial and naturally matured samples","authors":"Haiping Huang ,&nbsp;Hong Zhang ,&nbsp;Zhongliang Ma ,&nbsp;Xiangrong Yang ,&nbsp;Yong Ma ,&nbsp;Lunju Zheng","doi":"10.1016/j.coal.2025.104728","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of pore structures in marine shale during thermal maturation was investigated using naturally matured samples (Ro 0.46–1.26 %) from the Upper Cretaceous Second White Speckled Shale and artificially matured samples in a semi-open system (200–450 °C). Analytical techniques, including Rock-Eval pyrolysis, FIB-FESEM, and nitrogen adsorption, revealed key trends in pore volume (PV) and specific surface area (SSA). Immature samples exhibited high PV and SSA, which decreased during early oil generation (Ro ∼0.98 % or 350 °C) due to compaction and oil infill. PV and SSA rose significantly between Ro 0.98 % and 1.26 % (350–400 °C), driven by mesopore development, and remained elevated at higher temperatures. Artificially matured samples showed higher PV and SSA compared to naturally evolved samples, reflecting the absence of compaction and cementation processes in laboratory conditions. Naturally evolved samples demonstrated greater heterogeneity due to expulsion dynamics and geological factors, developing complex pore networks during hydrocarbon generation. Organic matter (OM) composition, dominated by Type II kerogen with terrestrial inputs, played a critical role in pore evolution. Amorphous organic matter (AOM) and solid bitumen were the primary OM components, with liptinite macerals and terrigenous vitrinite and inertinite also contributing. Clay minerals dominated the rock matrix, while pyrite framboids contributed dissolution-induced secondary porosity. SEM imaging identified five pore types, with OM-hosted pores forming predominantly in bitumen rather than kerogen. Mesopores (2–50 nm) were the dominant pore type, while micropores (&lt; 2 nm) were negligible. Fluorescence microscopy and pyrolysis experiments confirmed increasing maturity with depth, accompanied by significant intraparticle pore formation in migrated bitumen at higher temperatures. Artificial maturation studies highlight faster hydrocarbon generation and pore development compared to natural systems but fail to replicate long-term burial effects. PV correlated positively with expelled oil in artificial systems, while bitumen content negatively correlated with PV and SSA in both systems. Advanced imaging techniques and integrated natural and experimental models are essential to further understanding pore evolution, connectivity, and hydrocarbon generation mechanisms in shale reservoirs. This study emphasizes the interplay between OM composition, mineralogy, and thermal processes in shaping shale porosity during natural and artificial maturation.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"302 ","pages":"Article 104728"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016651622500045X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of pore structures in marine shale during thermal maturation was investigated using naturally matured samples (Ro 0.46–1.26 %) from the Upper Cretaceous Second White Speckled Shale and artificially matured samples in a semi-open system (200–450 °C). Analytical techniques, including Rock-Eval pyrolysis, FIB-FESEM, and nitrogen adsorption, revealed key trends in pore volume (PV) and specific surface area (SSA). Immature samples exhibited high PV and SSA, which decreased during early oil generation (Ro ∼0.98 % or 350 °C) due to compaction and oil infill. PV and SSA rose significantly between Ro 0.98 % and 1.26 % (350–400 °C), driven by mesopore development, and remained elevated at higher temperatures. Artificially matured samples showed higher PV and SSA compared to naturally evolved samples, reflecting the absence of compaction and cementation processes in laboratory conditions. Naturally evolved samples demonstrated greater heterogeneity due to expulsion dynamics and geological factors, developing complex pore networks during hydrocarbon generation. Organic matter (OM) composition, dominated by Type II kerogen with terrestrial inputs, played a critical role in pore evolution. Amorphous organic matter (AOM) and solid bitumen were the primary OM components, with liptinite macerals and terrigenous vitrinite and inertinite also contributing. Clay minerals dominated the rock matrix, while pyrite framboids contributed dissolution-induced secondary porosity. SEM imaging identified five pore types, with OM-hosted pores forming predominantly in bitumen rather than kerogen. Mesopores (2–50 nm) were the dominant pore type, while micropores (< 2 nm) were negligible. Fluorescence microscopy and pyrolysis experiments confirmed increasing maturity with depth, accompanied by significant intraparticle pore formation in migrated bitumen at higher temperatures. Artificial maturation studies highlight faster hydrocarbon generation and pore development compared to natural systems but fail to replicate long-term burial effects. PV correlated positively with expelled oil in artificial systems, while bitumen content negatively correlated with PV and SSA in both systems. Advanced imaging techniques and integrated natural and experimental models are essential to further understanding pore evolution, connectivity, and hydrocarbon generation mechanisms in shale reservoirs. This study emphasizes the interplay between OM composition, mineralogy, and thermal processes in shaping shale porosity during natural and artificial maturation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Coal Geology
International Journal of Coal Geology 工程技术-地球科学综合
CiteScore
11.00
自引率
14.30%
发文量
145
审稿时长
38 days
期刊介绍: The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.
期刊最新文献
Editorial Board Reassessment of the Pennsylvanian bio- and chronostratigraphy of the Saar-Lorraine Basin using high-precision UPb ages of volcanic ashes Extensive accumulation of organic matter in the Late Permian Dalong Formation, Western Hubei Trough, Southern China Evolution of pore structure in the Upper Cretaceous Second White Speckled Shale during thermal maturation: Insights from artificial and naturally matured samples Isotopic and hydrochemical evidence for the origins of unconventional gases in the Middle and Lower Jurassic coal measures in the Fukang area of Junggar Basin, NW China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1