Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer

IF 4.8 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Neoplasia Pub Date : 2025-02-24 DOI:10.1016/j.neo.2025.101143
Travis Vander Steen , Ingrid Espinoza , Cristina Duran , Guillem Casadevall , Eila Serrano-Hervás , Elisabet Cuyàs , Sara Verdura , George Kemble , Scott H. Kaufmann , Robert McWilliams , Sílvia Osuna , Daniel D. Billadeau , Javier A. Menendez , Ruth Lupu
{"title":"Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer","authors":"Travis Vander Steen ,&nbsp;Ingrid Espinoza ,&nbsp;Cristina Duran ,&nbsp;Guillem Casadevall ,&nbsp;Eila Serrano-Hervás ,&nbsp;Elisabet Cuyàs ,&nbsp;Sara Verdura ,&nbsp;George Kemble ,&nbsp;Scott H. Kaufmann ,&nbsp;Robert McWilliams ,&nbsp;Sílvia Osuna ,&nbsp;Daniel D. Billadeau ,&nbsp;Javier A. Menendez ,&nbsp;Ruth Lupu","doi":"10.1016/j.neo.2025.101143","DOIUrl":null,"url":null,"abstract":"<div><div>Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins. Computational studies with TVB-3166 and TVB-3664, two analogues of the clinical-grade FASNi TVB-2640 (denifanstat), confirmed their uncompetitive behavior towards NADPH when bound to the FASN ketoacyl reductase domain. The extent of NADPH accumulation, a consequence of FASN inhibition, paralleled the sensitivity of PDAC cells to the apoptotic effects of TVB FASNis in conventional PDAC cell lines that naturally express varying levels of FASN. FASN inhibition dramatically increased the sensitivity of “FASN-high” expressing PDAC cells to the BCL2/BCL-X<sub>L</sub>/BCL-W inhibitor ABT-263/navitoclax and the BCL2-selective inhibitor ABT-199/venetoclax, both <em>in vitro</em> and in <em>in vivo</em> xenografted tumors. The ability of TVB FASNis to shift the balance of pro- and anti-apoptotic proteins and thereby push PDAC cells closer to the apoptotic threshold was also observed in cell lines developed from patient-derived xenografts (PDXs) representative of the classical (pancreatic) transcriptomic subtype of PDAC. Experiments in PDAC PDXs <em>in vivo</em> confirmed the synergistic antitumor activity of TVB-3664 with navitoclax and venetoclax, independent of the nature of the replication stress signature of patient-derived PDAC cells. The discovery that targeted inhibition of FASN is a metabolic perturbation that sensitizes PDAC cells to BH3 mimetics warrants further investigation to overcome resistance to mitochondrial apoptosis in PDAC patients.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"62 ","pages":"Article 101143"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins. Computational studies with TVB-3166 and TVB-3664, two analogues of the clinical-grade FASNi TVB-2640 (denifanstat), confirmed their uncompetitive behavior towards NADPH when bound to the FASN ketoacyl reductase domain. The extent of NADPH accumulation, a consequence of FASN inhibition, paralleled the sensitivity of PDAC cells to the apoptotic effects of TVB FASNis in conventional PDAC cell lines that naturally express varying levels of FASN. FASN inhibition dramatically increased the sensitivity of “FASN-high” expressing PDAC cells to the BCL2/BCL-XL/BCL-W inhibitor ABT-263/navitoclax and the BCL2-selective inhibitor ABT-199/venetoclax, both in vitro and in in vivo xenografted tumors. The ability of TVB FASNis to shift the balance of pro- and anti-apoptotic proteins and thereby push PDAC cells closer to the apoptotic threshold was also observed in cell lines developed from patient-derived xenografts (PDXs) representative of the classical (pancreatic) transcriptomic subtype of PDAC. Experiments in PDAC PDXs in vivo confirmed the synergistic antitumor activity of TVB-3664 with navitoclax and venetoclax, independent of the nature of the replication stress signature of patient-derived PDAC cells. The discovery that targeted inhibition of FASN is a metabolic perturbation that sensitizes PDAC cells to BH3 mimetics warrants further investigation to overcome resistance to mitochondrial apoptosis in PDAC patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neoplasia
Neoplasia 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
82
审稿时长
26 days
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
期刊最新文献
Sialylated IgG-activated integrin β4-Src-Erk axis stabilizes c-Myc in a p300 lysine acetyltransferase-dependent manner to promote colorectal cancer liver metastasis Exogenous BMI1 expression aggravates oral squamous cell carcinomas in tongue epithelia Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer m6A eraser ALKBH5/treRNA1/DDX46 axis regulates BCR expression Effect of MisMatch repair deficiency on metastasis occurrence in a syngeneic mouse model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1