Enhanced single-cell RNA-seq embedding through gene expression and data-driven gene-gene interaction integration

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-02-24 DOI:10.1016/j.compbiomed.2025.109880
Hojjat Torabi Goudarzi , Maziyar Baran Pouyan
{"title":"Enhanced single-cell RNA-seq embedding through gene expression and data-driven gene-gene interaction integration","authors":"Hojjat Torabi Goudarzi ,&nbsp;Maziyar Baran Pouyan","doi":"10.1016/j.compbiomed.2025.109880","DOIUrl":null,"url":null,"abstract":"<div><div>Single-cell RNA sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity, enabling detailed analysis of complex biological systems at single-cell resolution. However, the high dimensionality and technical noise inherent in scRNA-seq data pose significant analytical challenges. While current embedding methods focus primarily on gene expression levels, they often overlook crucial gene-gene interactions that govern cellular identity and function. To address this limitation, we present a novel embedding approach that integrates both gene expression profiles and data-driven gene-gene interactions. Our method first constructs a Cell-Leaf Graph (CLG) using random forest models to capture regulatory relationships between genes, while simultaneously building a K-Nearest Neighbor Graph (KNNG) to represent expression similarities between cells. These graphs are then combined into an Enriched Cell-Leaf Graph (ECLG), which serves as input for a graph neural network to compute cell embeddings. By incorporating both expression levels and gene-gene interactions, our approach provides a more comprehensive representation of cellular states. Extensive evaluation across multiple datasets demonstrates that our method enhances the detection of rare cell populations and improves downstream analyses such as visualization, clustering, and trajectory inference. This integrated approach represents a significant advance in single-cell data analysis, offering a more complete framework for understanding cellular diversity and dynamics.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"188 ","pages":"Article 109880"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002318","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) provides unprecedented insights into cellular heterogeneity, enabling detailed analysis of complex biological systems at single-cell resolution. However, the high dimensionality and technical noise inherent in scRNA-seq data pose significant analytical challenges. While current embedding methods focus primarily on gene expression levels, they often overlook crucial gene-gene interactions that govern cellular identity and function. To address this limitation, we present a novel embedding approach that integrates both gene expression profiles and data-driven gene-gene interactions. Our method first constructs a Cell-Leaf Graph (CLG) using random forest models to capture regulatory relationships between genes, while simultaneously building a K-Nearest Neighbor Graph (KNNG) to represent expression similarities between cells. These graphs are then combined into an Enriched Cell-Leaf Graph (ECLG), which serves as input for a graph neural network to compute cell embeddings. By incorporating both expression levels and gene-gene interactions, our approach provides a more comprehensive representation of cellular states. Extensive evaluation across multiple datasets demonstrates that our method enhances the detection of rare cell populations and improves downstream analyses such as visualization, clustering, and trajectory inference. This integrated approach represents a significant advance in single-cell data analysis, offering a more complete framework for understanding cellular diversity and dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Deep Radon Prior: A fully unsupervised framework for sparse-view CT reconstruction FEGGNN: Feature-Enhanced Gated Graph Neural Network for robust few-shot skin disease classification Exploring the potential of direct-acting antivirals against Chikungunya virus through structure-based drug repositioning and molecular dynamic simulations Comprehensive experimental and computational analysis of endemic Allium tuncelianum: Phytochemical profiling, antimicrobial activity, and In silico studies for potential therapeutic applications Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1