Shuo Xu , Jintao Fu , Yuewen Sun , Peng Cong , Xincheng Xiang
{"title":"Deep Radon Prior: A fully unsupervised framework for sparse-view CT reconstruction","authors":"Shuo Xu , Jintao Fu , Yuewen Sun , Peng Cong , Xincheng Xiang","doi":"10.1016/j.compbiomed.2025.109853","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Sparse-view computed tomography (CT) substantially reduces radiation exposure but often introduces severe artifacts that compromise image fidelity. Recent advances in deep learning for solving inverse problems have shown considerable promise in enhancing CT reconstruction; however, most approaches heavily rely on high-quality training datasets and lack interpretability.</div></div><div><h3>Method</h3><div>To address these challenges, this paper introduces a novel, fully unsupervised deep learning framework that mitigates the dependency on extensive labeled data and improves the interpretability of the reconstruction process. Specifically, we propose the Deep Radon Prior (DRP) framework, inspired by the Deep Image Prior (DIP), which integrates a neural network as an implicit prior into the iterative reconstruction process. This integration facilitates the image domain and the Radon domain gradient feedback and progressively optimizes the neural network through multiple stages, effectively narrowing the solution space in the Radon domain for under-constrained imaging protocols.</div></div><div><h3>Results</h3><div>We discuss the convergence properties of DRP and validate our approach experimentally, demonstrating its ability to produce high-fidelity images while significantly reducing artifacts. Results indicate that DRP achieves comparable or superior performance to supervised methods, thereby addressing the inherent challenges of sparse-view CT and substantially enhancing image quality.</div></div><div><h3>Conclusions</h3><div>The introduction of DRP represents a significant advancement in sparse-view CT imaging by leveraging the inherent deep self-correlation of the Radon domain, enabling effective cooperation with neural network manifolds for image reconstruction. This paradigm shift toward fully unsupervised learning offers a scalable and insightful approach to medical imaging, potentially redefining the landscape of CT reconstruction.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Sparse-view computed tomography (CT) substantially reduces radiation exposure but often introduces severe artifacts that compromise image fidelity. Recent advances in deep learning for solving inverse problems have shown considerable promise in enhancing CT reconstruction; however, most approaches heavily rely on high-quality training datasets and lack interpretability.
Method
To address these challenges, this paper introduces a novel, fully unsupervised deep learning framework that mitigates the dependency on extensive labeled data and improves the interpretability of the reconstruction process. Specifically, we propose the Deep Radon Prior (DRP) framework, inspired by the Deep Image Prior (DIP), which integrates a neural network as an implicit prior into the iterative reconstruction process. This integration facilitates the image domain and the Radon domain gradient feedback and progressively optimizes the neural network through multiple stages, effectively narrowing the solution space in the Radon domain for under-constrained imaging protocols.
Results
We discuss the convergence properties of DRP and validate our approach experimentally, demonstrating its ability to produce high-fidelity images while significantly reducing artifacts. Results indicate that DRP achieves comparable or superior performance to supervised methods, thereby addressing the inherent challenges of sparse-view CT and substantially enhancing image quality.
Conclusions
The introduction of DRP represents a significant advancement in sparse-view CT imaging by leveraging the inherent deep self-correlation of the Radon domain, enabling effective cooperation with neural network manifolds for image reconstruction. This paradigm shift toward fully unsupervised learning offers a scalable and insightful approach to medical imaging, potentially redefining the landscape of CT reconstruction.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.