Extended Tolman–Oppenheimer–Volkoff Equation in f(R,A) gravity

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Journal of Physics Pub Date : 2025-02-13 DOI:10.1016/j.cjph.2025.02.006
Amjad Hussain , Mushtaq Ahmad , M. Farasat Shamir , Adnan Malik , Fatemah Mofarreh
{"title":"Extended Tolman–Oppenheimer–Volkoff Equation in f(R,A) gravity","authors":"Amjad Hussain ,&nbsp;Mushtaq Ahmad ,&nbsp;M. Farasat Shamir ,&nbsp;Adnan Malik ,&nbsp;Fatemah Mofarreh","doi":"10.1016/j.cjph.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a more general version of the Tolman–Oppenheimer–Volkoff equation that shows the hydrostatic equilibrium in the context of the gravitational theory <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>. This theory is one of several modified theories of gravity that have been proposed. Anisotropic matter content is considered to investigate the compact objects’ equilibrium structure. This work is focused on the linear model <span><math><mrow><mi>R</mi><mo>+</mo><mi>α</mi><mi>A</mi></mrow></math></span>, in which <span><math><mi>R</mi></math></span> is the Ricci scalar, <span><math><mi>A</mi></math></span> is the anticurvature scalar, and <span><math><mi>α</mi></math></span> is the coupling factor. To solve the modified Tolman–Oppenheimer–Volkoff equation, we obtained suitable metric potential functions using the Karmarkar condition and employing an appropriate equation of state. We also determine an extended mass function by using the field equations. In this work, we have found a numerical solution of the dimensionless Tolman–Oppenheimer–Volkoff equation and plotted the mass–radius relation alongside several physical quantities, including radial pressure, mass function, scalar curvature, anisotropy, and the force acting on the system. We conduct the entire analysis using three compact stars: Cen X-3, Her X-1, and LMC X-4. Due to the complexity of the Tolman–Oppenheimer–Volkoff equations, we have employed the numerical technique to find various unknowns that appeared in the problem.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"94 ","pages":"Pages 609-626"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000498","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a more general version of the Tolman–Oppenheimer–Volkoff equation that shows the hydrostatic equilibrium in the context of the gravitational theory f(R,A). This theory is one of several modified theories of gravity that have been proposed. Anisotropic matter content is considered to investigate the compact objects’ equilibrium structure. This work is focused on the linear model R+αA, in which R is the Ricci scalar, A is the anticurvature scalar, and α is the coupling factor. To solve the modified Tolman–Oppenheimer–Volkoff equation, we obtained suitable metric potential functions using the Karmarkar condition and employing an appropriate equation of state. We also determine an extended mass function by using the field equations. In this work, we have found a numerical solution of the dimensionless Tolman–Oppenheimer–Volkoff equation and plotted the mass–radius relation alongside several physical quantities, including radial pressure, mass function, scalar curvature, anisotropy, and the force acting on the system. We conduct the entire analysis using three compact stars: Cen X-3, Her X-1, and LMC X-4. Due to the complexity of the Tolman–Oppenheimer–Volkoff equations, we have employed the numerical technique to find various unknowns that appeared in the problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
期刊最新文献
Structural, electronic, thermoelectric, optical, and magnetocaloric properties of Mn-based chalcogenide MnAl2Te4: An Ab initio calculations and Monte Carlo simulations Theoretical study for constructing red multiple-resonance thermally activated delayed fluorescence molecules with narrowband emission by donor engineering strategy Phase transitions in car-following model integrating the comprehensive deviations collaboration effect under V2X environment A front-fixing method for the nonlinear and coupled phase change model in a moving domain Phase-modulated quantum routing with a giant atom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1