{"title":"Propanol and its blend in diesel engines: An extensive review","authors":"Yahya Çelebi , Mazlum Cengiz , Hüseyin Aydın","doi":"10.1016/j.joei.2025.102047","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable energy resources offer remarkable solutions to energy-related issues of reserve depletion and the emissions of harmful substances caused by fossil fuels. Energy demand increases as the world population grows. To fulfill the worldwide growing energy demand, especially in the transportation sector, biofuels are viable candidates to be used as partial or fully in diesel engines within existing engine infrastructure thanks to their abundant feedstocks and low costs. Propanol is one promising fuel for diesel engines. It can be produced from both petrochemical and biochemical routes which make it feasible to produce on large-scale. Moreover, it has higher energy content and boiling point, and lower hygroscopicity in comparison with lower alcohols. This review study explores comprehensive utilization of propanol and its blends in diesel engines to show its impacts on combustion behaviors, performance metrics and exhaust emissions. Furthermore, the paper comprehensively analyzes the production techniques, supply and demand trends, sustainability and safety considerations and other fuel applications of propanol. The paper concludes by highlighting key findings and identifying areas for further research. Overall, this review offers crucial insights into the potential of propanol to decrease the dependence on fossil diesel fuel and improve engine performance and its associated emissions.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102047"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000753","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable energy resources offer remarkable solutions to energy-related issues of reserve depletion and the emissions of harmful substances caused by fossil fuels. Energy demand increases as the world population grows. To fulfill the worldwide growing energy demand, especially in the transportation sector, biofuels are viable candidates to be used as partial or fully in diesel engines within existing engine infrastructure thanks to their abundant feedstocks and low costs. Propanol is one promising fuel for diesel engines. It can be produced from both petrochemical and biochemical routes which make it feasible to produce on large-scale. Moreover, it has higher energy content and boiling point, and lower hygroscopicity in comparison with lower alcohols. This review study explores comprehensive utilization of propanol and its blends in diesel engines to show its impacts on combustion behaviors, performance metrics and exhaust emissions. Furthermore, the paper comprehensively analyzes the production techniques, supply and demand trends, sustainability and safety considerations and other fuel applications of propanol. The paper concludes by highlighting key findings and identifying areas for further research. Overall, this review offers crucial insights into the potential of propanol to decrease the dependence on fossil diesel fuel and improve engine performance and its associated emissions.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.