{"title":"Trans 10, cis 12-conjugated linoleic acid alleviates vascular fibrosis in obese mice","authors":"Shuai Yu , Yu Rao , Jiaqi Lu, Jiarun Li, Baozhu Wang, Kemian Gou","doi":"10.1016/j.plefa.2025.102669","DOIUrl":null,"url":null,"abstract":"<div><div>Controlling food intake and improving fat distribution are crucial for preventing and treating cardiovascular disease. Trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) can inhibit fat deposition and facilitate bodyweight reduction, suggesting its potential to safeguard against cardiovascular disease. The transgenic (tg) mice, which inserted Pai expression cassette into the Rosa26 locus, can produce endogenous t10c12-CLA. In the present study, we used tg mice to evaluate whether the long-term existence of t10c12-CLA has a protective effect on the vascular fibrosis phenotype. The male wild-type (wt) and tg mice were marked as wt+chow, tg+chow, wt+HFD and tg+HFD groups with 24 weeks feeding the chow diet or high-fat diet (HFD). Compared with wt+chow and tg+chow mice, wt+HFD mice showed a significant (<em>P</em> < 0.05) increase in bodyweight and circulating lipid levels. The arterial blood vessels of wt+HFD mice displayed obvious lipid streaks and disorganization of collagen fibers. While compared with wt+HFD mice, tg+HFD mice showed a significant (<em>P</em> < 0.05) decrease in body weight and circulating lipid levels. The arterial blood vessels of tg+HFD mice displayed slight foam cells, predicting that t10c12-CLA can alleviates vascular fibrosis degree caused by HFD. The RNA and protein expression of proinflammatory factors in arterial blood vessels of tg+HFD mice were significantly (<em>P</em> < 0.05) decreased than those of wt+HFD mice. In conclusion, long-term existence of t10c12-CLA can improve lipid metabolism and circulating lipid levels and inhibit vascular inflammation and vascular fibrosis degree in obese mice, thereby preventing the further development of cardiovascular disease.</div></div>","PeriodicalId":94179,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"204 ","pages":"Article 102669"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952327825000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling food intake and improving fat distribution are crucial for preventing and treating cardiovascular disease. Trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) can inhibit fat deposition and facilitate bodyweight reduction, suggesting its potential to safeguard against cardiovascular disease. The transgenic (tg) mice, which inserted Pai expression cassette into the Rosa26 locus, can produce endogenous t10c12-CLA. In the present study, we used tg mice to evaluate whether the long-term existence of t10c12-CLA has a protective effect on the vascular fibrosis phenotype. The male wild-type (wt) and tg mice were marked as wt+chow, tg+chow, wt+HFD and tg+HFD groups with 24 weeks feeding the chow diet or high-fat diet (HFD). Compared with wt+chow and tg+chow mice, wt+HFD mice showed a significant (P < 0.05) increase in bodyweight and circulating lipid levels. The arterial blood vessels of wt+HFD mice displayed obvious lipid streaks and disorganization of collagen fibers. While compared with wt+HFD mice, tg+HFD mice showed a significant (P < 0.05) decrease in body weight and circulating lipid levels. The arterial blood vessels of tg+HFD mice displayed slight foam cells, predicting that t10c12-CLA can alleviates vascular fibrosis degree caused by HFD. The RNA and protein expression of proinflammatory factors in arterial blood vessels of tg+HFD mice were significantly (P < 0.05) decreased than those of wt+HFD mice. In conclusion, long-term existence of t10c12-CLA can improve lipid metabolism and circulating lipid levels and inhibit vascular inflammation and vascular fibrosis degree in obese mice, thereby preventing the further development of cardiovascular disease.