Ya Zhao , Jingyue Zhang , Jiao Xia , Xiaoyan Han , Shuai Ben , Tianyi Liu , Wan Mu , Mudi Yao , Qin Jiang , Biao Yan
{"title":"Identification of age-related metabolomic signatures in vascular tissues","authors":"Ya Zhao , Jingyue Zhang , Jiao Xia , Xiaoyan Han , Shuai Ben , Tianyi Liu , Wan Mu , Mudi Yao , Qin Jiang , Biao Yan","doi":"10.1016/j.bbrc.2025.151513","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular aging contributes to the morbidity and mortality in older individuals, closely linked to an imbalance between energy consumption and production. Despite its importance, our understanding of how aging affects vascular metabolism and leads to vascular diseases remains limited. In this study, we explored the metabolomic characteristics of vascular aging by analyzing aortic tissues from young and old mice through untargeted metabolomic analysis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We identified 85 differential metabolites, with 37 up-regulated and 48 down-regulated, primarily consisting of lipids and lipid-like molecules, based on the criteria of variable importance in projection (VIP) > 1 and <em>P</em> < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant involvement of these metabolites in six metabolic pathways (<em>P</em> < 0.05), particularly in glycerophospholipid metabolism. Receiver operating characteristic (ROC) curve analysis highlighted eight altered metabolites in glycerophospholipid metabolism, such as phosphatidylcholine (PC) (17:0/22:6) and lysophosphatidylcholine (LPC) (18:2), which demonstrated strong discriminatory ability for vascular aging with an area under the curve (AUC) exceeding 0.85. This study provides novel insights into metabolomic signature of vascular aging, offering important clues for future treatments of age-related vascular disorders.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"754 ","pages":"Article 151513"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X2500227X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular aging contributes to the morbidity and mortality in older individuals, closely linked to an imbalance between energy consumption and production. Despite its importance, our understanding of how aging affects vascular metabolism and leads to vascular diseases remains limited. In this study, we explored the metabolomic characteristics of vascular aging by analyzing aortic tissues from young and old mice through untargeted metabolomic analysis using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We identified 85 differential metabolites, with 37 up-regulated and 48 down-regulated, primarily consisting of lipids and lipid-like molecules, based on the criteria of variable importance in projection (VIP) > 1 and P < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant involvement of these metabolites in six metabolic pathways (P < 0.05), particularly in glycerophospholipid metabolism. Receiver operating characteristic (ROC) curve analysis highlighted eight altered metabolites in glycerophospholipid metabolism, such as phosphatidylcholine (PC) (17:0/22:6) and lysophosphatidylcholine (LPC) (18:2), which demonstrated strong discriminatory ability for vascular aging with an area under the curve (AUC) exceeding 0.85. This study provides novel insights into metabolomic signature of vascular aging, offering important clues for future treatments of age-related vascular disorders.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics