Ali Muhammad , Muhammad Hafeez Ullah Khan , Xiangjun Kong , Shuaichao Zheng , Na Bai , Lijie Li , Nina Zhang , Sajid Muhammad , Zengqiang Li , Xiaotian Zhang , Chen Miao , Zhiyong Zhang
{"title":"Rhizospheric crosstalk: A mechanistic overview of how plant secondary metabolites alleviate abiotic stresses","authors":"Ali Muhammad , Muhammad Hafeez Ullah Khan , Xiangjun Kong , Shuaichao Zheng , Na Bai , Lijie Li , Nina Zhang , Sajid Muhammad , Zengqiang Li , Xiaotian Zhang , Chen Miao , Zhiyong Zhang","doi":"10.1016/j.plantsci.2025.112431","DOIUrl":null,"url":null,"abstract":"<div><div>Plants often encounter incompatible growing conditions, such as drought, extreme temperatures, salinity, and heavy metals, which negatively impact their growth and development, resulting in reduced yield and, in severe cases, plant death. These stresses trigger the synthesis of plant secondary metabolites (PSMs), which help plants develop strategies to deter enemies, combat pathogens, outcompete competitors, and overcome environmental restraints. PSMs are released into the rhizosphere and play crucial roles in plant defense and communication. The multifunctionality of PSMs offers new insights into the plant intricate adaptive responses, which can refine our understanding of plant tolerance mechanisms in challenging environments. Thus, elucidating the chemical composition and functions of plant-derived specialized metabolites in the rhizosphere is the key to understanding interactions in this belowground environment. In this review, we aim to elucidate how PSMs exudation shapes the activities and abundance of the rhizosphere microbiome. We also highlight key environmental factors that regulate the structure and diversity of microbial communities. Finally, we discuss various preventive roles of PSMs, exploring how plants recruit microbes preemptively to mitigate diverse abiotic stresses. Additionally, we emphasize the significant contribution of phenolic compounds to the antioxidant defense response in plants, regulated through the shikimate pathway and is considered as a distinctive plant stress resilience component as compared to other PSMs under abiotic stress. Collectively, this study reveals the significance of understanding the multifaceted crosstalk between PSMs and the microbiome, which will facilitate the potential for developing methods to manipulate PSMs-microbiome interaction with predictive outcomes for sustainable crop production.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"354 ","pages":"Article 112431"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000494","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants often encounter incompatible growing conditions, such as drought, extreme temperatures, salinity, and heavy metals, which negatively impact their growth and development, resulting in reduced yield and, in severe cases, plant death. These stresses trigger the synthesis of plant secondary metabolites (PSMs), which help plants develop strategies to deter enemies, combat pathogens, outcompete competitors, and overcome environmental restraints. PSMs are released into the rhizosphere and play crucial roles in plant defense and communication. The multifunctionality of PSMs offers new insights into the plant intricate adaptive responses, which can refine our understanding of plant tolerance mechanisms in challenging environments. Thus, elucidating the chemical composition and functions of plant-derived specialized metabolites in the rhizosphere is the key to understanding interactions in this belowground environment. In this review, we aim to elucidate how PSMs exudation shapes the activities and abundance of the rhizosphere microbiome. We also highlight key environmental factors that regulate the structure and diversity of microbial communities. Finally, we discuss various preventive roles of PSMs, exploring how plants recruit microbes preemptively to mitigate diverse abiotic stresses. Additionally, we emphasize the significant contribution of phenolic compounds to the antioxidant defense response in plants, regulated through the shikimate pathway and is considered as a distinctive plant stress resilience component as compared to other PSMs under abiotic stress. Collectively, this study reveals the significance of understanding the multifaceted crosstalk between PSMs and the microbiome, which will facilitate the potential for developing methods to manipulate PSMs-microbiome interaction with predictive outcomes for sustainable crop production.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.