Effect of curdlan on the physicochemical properties and microscopic morphology of spiced beef during cooking and freezing

IF 7.1 1区 农林科学 Q1 Agricultural and Biological Sciences Meat Science Pub Date : 2025-02-21 DOI:10.1016/j.meatsci.2025.109781
Yuanzheng Li , Huan Zhang , Dongxu Du , Shuai Gao , Wenqing Ma , Miaomiao Liu , Li Feng , Yungang Cao , Youling Xiong
{"title":"Effect of curdlan on the physicochemical properties and microscopic morphology of spiced beef during cooking and freezing","authors":"Yuanzheng Li ,&nbsp;Huan Zhang ,&nbsp;Dongxu Du ,&nbsp;Shuai Gao ,&nbsp;Wenqing Ma ,&nbsp;Miaomiao Liu ,&nbsp;Li Feng ,&nbsp;Yungang Cao ,&nbsp;Youling Xiong","doi":"10.1016/j.meatsci.2025.109781","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to establish the functional influence of curdlan (0 %, 1.0 %, 2.0 %, and 3.0 %) on the quality of spiced beef through monitoring changes in cooking yield, textural properties, pH, oxidative stability, and micromorphology during marination, cooking and freezing. The results showed significant enhancements (<em>P</em> &lt; 0.05) of viscosity and absorption yield of the marinade solution as well as the freezing rate of spiced beef upon, increasing the curdlan concentration. At a 2.0 % curdlan addition level, spiced beef showed the maximum tenderness (shear force), increased springiness and elasticity. Meanwhile, the colorimetric values were improved and lipid oxidation (peroxide; malonaldehyde) was consistently reduced during storage up to 14 days, whereas 3.0 % curdlan on day 14 exacerbated oxidation. Scanning electron microscopy and confocal laser scanning microscopy imaging of beef samples treated with 1.0 % and 2.0 % curdlan showed a relatively even distribution of curdlan within muscle fiber bundles, contrasting to 3.0 % curdlan treatment where curdlan accumulated mostly in the gaps between muscle bundles and fibers. Additionally, low-field NMR analysis demonstrated that the inclusion of 2.0 % curdlan significantly increased the immobile water content (<em>P</em><sub>23</sub>). In corroboration, sensory analysis indicated that spiced beef treated with 2.0 % curdlan had the highest appearance, juiciness, taste, and flavor scores, suggesting that muscle structural improvement by the curdlan inclusion, optimal at the 2.0 % level, played a principal role in the quality enhancements of marinaded spiced beef.</div></div>","PeriodicalId":389,"journal":{"name":"Meat Science","volume":"224 ","pages":"Article 109781"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309174025000427","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to establish the functional influence of curdlan (0 %, 1.0 %, 2.0 %, and 3.0 %) on the quality of spiced beef through monitoring changes in cooking yield, textural properties, pH, oxidative stability, and micromorphology during marination, cooking and freezing. The results showed significant enhancements (P < 0.05) of viscosity and absorption yield of the marinade solution as well as the freezing rate of spiced beef upon, increasing the curdlan concentration. At a 2.0 % curdlan addition level, spiced beef showed the maximum tenderness (shear force), increased springiness and elasticity. Meanwhile, the colorimetric values were improved and lipid oxidation (peroxide; malonaldehyde) was consistently reduced during storage up to 14 days, whereas 3.0 % curdlan on day 14 exacerbated oxidation. Scanning electron microscopy and confocal laser scanning microscopy imaging of beef samples treated with 1.0 % and 2.0 % curdlan showed a relatively even distribution of curdlan within muscle fiber bundles, contrasting to 3.0 % curdlan treatment where curdlan accumulated mostly in the gaps between muscle bundles and fibers. Additionally, low-field NMR analysis demonstrated that the inclusion of 2.0 % curdlan significantly increased the immobile water content (P23). In corroboration, sensory analysis indicated that spiced beef treated with 2.0 % curdlan had the highest appearance, juiciness, taste, and flavor scores, suggesting that muscle structural improvement by the curdlan inclusion, optimal at the 2.0 % level, played a principal role in the quality enhancements of marinaded spiced beef.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Meat Science
Meat Science 工程技术-食品科技
CiteScore
12.60
自引率
9.90%
发文量
282
审稿时长
60 days
期刊介绍: The aim of Meat Science is to serve as a suitable platform for the dissemination of interdisciplinary and international knowledge on all factors influencing the properties of meat. While the journal primarily focuses on the flesh of mammals, contributions related to poultry will be considered if they enhance the overall understanding of the relationship between muscle nature and meat quality post mortem. Additionally, papers on large birds (e.g., emus, ostriches) as well as wild-captured mammals and crocodiles will be welcomed.
期刊最新文献
The quality of aged beef and aged-then-frozen lamb meat after up to 2 years of frozen storage at −12 or −18 °C Effects of dietary Inonotus obliquus fermentation products supplementation on meat quality and antioxidant capacity of finishing pigs Editorial Board Effect of curdlan on the physicochemical properties and microscopic morphology of spiced beef during cooking and freezing Enhancing shelf life of bison meat using CO2/N2 modified atmosphere master bag packaging system with oxygen scavengers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1