Julián Arenas-Guerrero, Oscar Corcho, María S. Pérez
{"title":"Intermediate triple table: A general architecture for virtual knowledge graphs","authors":"Julián Arenas-Guerrero, Oscar Corcho, María S. Pérez","doi":"10.1016/j.knosys.2025.113179","DOIUrl":null,"url":null,"abstract":"<div><div>Virtual knowledge graphs (VKGs) have been widely applied to access relational data with a semantic layer by using an ontology in use cases that are dynamic in nature. However, current VKG techniques focus mainly on accessing a single relational database and remain largely unstudied for data integration with several heterogeneous data sources. To overcome this limitation, we propose <em>intermediate triple table</em> (<span>ITT</span>), a general VKG architecture to access multiple and diverse data sources. Our proposal is based on data shipping and addresses heterogeneity by adopting a schema-oblivious graph representation that intervenes between the sources and the queries. We minimize data computation by just materializing a relevant subgraph for a specific query. We employ star-shaped query processing and extend this technique to mapping candidate selection. For rapid materialization of the <span>ITT</span>, we apply a mapping partitioning technique to parallelize mapping execution, which also guarantees duplicate-free subgraphs and reduces memory consumption. We use SPARQL-to-SQL query translation to homogeneously evaluate queries over the <span>ITT</span> and execute them with an in-process analytical store. We implemented <span>ITT</span> on top of a knowledge graph materialization engine and evaluated it with two VKG benchmarks. The experimental results show that our proposal outperforms state-of-the-art techniques for complex graph queries in terms of execution time. It also decreases the number of timeouts although it uses more memory as a trade-off. The experiments also demonstrate the source independence of the architecture on a mixed distribution of data with SQL and document stores together with various file formats.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"314 ","pages":"Article 113179"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125002266","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual knowledge graphs (VKGs) have been widely applied to access relational data with a semantic layer by using an ontology in use cases that are dynamic in nature. However, current VKG techniques focus mainly on accessing a single relational database and remain largely unstudied for data integration with several heterogeneous data sources. To overcome this limitation, we propose intermediate triple table (ITT), a general VKG architecture to access multiple and diverse data sources. Our proposal is based on data shipping and addresses heterogeneity by adopting a schema-oblivious graph representation that intervenes between the sources and the queries. We minimize data computation by just materializing a relevant subgraph for a specific query. We employ star-shaped query processing and extend this technique to mapping candidate selection. For rapid materialization of the ITT, we apply a mapping partitioning technique to parallelize mapping execution, which also guarantees duplicate-free subgraphs and reduces memory consumption. We use SPARQL-to-SQL query translation to homogeneously evaluate queries over the ITT and execute them with an in-process analytical store. We implemented ITT on top of a knowledge graph materialization engine and evaluated it with two VKG benchmarks. The experimental results show that our proposal outperforms state-of-the-art techniques for complex graph queries in terms of execution time. It also decreases the number of timeouts although it uses more memory as a trade-off. The experiments also demonstrate the source independence of the architecture on a mixed distribution of data with SQL and document stores together with various file formats.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.