Intermediate triple table: A general architecture for virtual knowledge graphs

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2025-02-21 DOI:10.1016/j.knosys.2025.113179
Julián Arenas-Guerrero, Oscar Corcho, María S. Pérez
{"title":"Intermediate triple table: A general architecture for virtual knowledge graphs","authors":"Julián Arenas-Guerrero,&nbsp;Oscar Corcho,&nbsp;María S. Pérez","doi":"10.1016/j.knosys.2025.113179","DOIUrl":null,"url":null,"abstract":"<div><div>Virtual knowledge graphs (VKGs) have been widely applied to access relational data with a semantic layer by using an ontology in use cases that are dynamic in nature. However, current VKG techniques focus mainly on accessing a single relational database and remain largely unstudied for data integration with several heterogeneous data sources. To overcome this limitation, we propose <em>intermediate triple table</em> (<span>ITT</span>), a general VKG architecture to access multiple and diverse data sources. Our proposal is based on data shipping and addresses heterogeneity by adopting a schema-oblivious graph representation that intervenes between the sources and the queries. We minimize data computation by just materializing a relevant subgraph for a specific query. We employ star-shaped query processing and extend this technique to mapping candidate selection. For rapid materialization of the <span>ITT</span>, we apply a mapping partitioning technique to parallelize mapping execution, which also guarantees duplicate-free subgraphs and reduces memory consumption. We use SPARQL-to-SQL query translation to homogeneously evaluate queries over the <span>ITT</span> and execute them with an in-process analytical store. We implemented <span>ITT</span> on top of a knowledge graph materialization engine and evaluated it with two VKG benchmarks. The experimental results show that our proposal outperforms state-of-the-art techniques for complex graph queries in terms of execution time. It also decreases the number of timeouts although it uses more memory as a trade-off. The experiments also demonstrate the source independence of the architecture on a mixed distribution of data with SQL and document stores together with various file formats.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"314 ","pages":"Article 113179"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125002266","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual knowledge graphs (VKGs) have been widely applied to access relational data with a semantic layer by using an ontology in use cases that are dynamic in nature. However, current VKG techniques focus mainly on accessing a single relational database and remain largely unstudied for data integration with several heterogeneous data sources. To overcome this limitation, we propose intermediate triple table (ITT), a general VKG architecture to access multiple and diverse data sources. Our proposal is based on data shipping and addresses heterogeneity by adopting a schema-oblivious graph representation that intervenes between the sources and the queries. We minimize data computation by just materializing a relevant subgraph for a specific query. We employ star-shaped query processing and extend this technique to mapping candidate selection. For rapid materialization of the ITT, we apply a mapping partitioning technique to parallelize mapping execution, which also guarantees duplicate-free subgraphs and reduces memory consumption. We use SPARQL-to-SQL query translation to homogeneously evaluate queries over the ITT and execute them with an in-process analytical store. We implemented ITT on top of a knowledge graph materialization engine and evaluated it with two VKG benchmarks. The experimental results show that our proposal outperforms state-of-the-art techniques for complex graph queries in terms of execution time. It also decreases the number of timeouts although it uses more memory as a trade-off. The experiments also demonstrate the source independence of the architecture on a mixed distribution of data with SQL and document stores together with various file formats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
SCDFuse: A semantic complementary distillation framework for joint infrared and visible image fusion and denoising Low-rank joint distribution adaptation for cross-corpus speech emotion recognition Text-guided deep correlation mining and self-learning feature fusion framework for multimodal sentiment analysis A novel parallel framework for scatter search Edge Fusion Diffusion for Single Image Super-Resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1