{"title":"Multi-Wavelength Achromatic Imaging With a Pleochroic Confocal Photon Sieve","authors":"Yuanyuan Liu;Yuanhao Bao;Junyong Zhang;Qiwen Zhan","doi":"10.1109/LPT.2025.3541195","DOIUrl":null,"url":null,"abstract":"Achromatic performance is crucial for a variety of multi-wavelength optical imaging applications due to conventional diffractive optical elements suffer from large chromatic aberration. Here, we introduce a multi-wavelength achromatic imaging system utilizing a pleochroic confocal photon sieve (PCPS). In this technique, three foci at three different wavelengths are designed to coexist at various spatial locations on the same plane. Characterization results demonstrate achromatic focus performance at specified wavelengths, and the optimal full width at half maximum (FWHM) of point spread function (PSF) indicate that our device can achieve an optical imaging resolution of <inline-formula> <tex-math>$5~\\mu $ </tex-math></inline-formula>m across all designated wavelengths. Furthermore, we also explored the potential application of the PCPS in single-frame multi-wavelength coherent diffraction imaging (CDI), and preliminary experimental results are presented to confirm the effectiveness of the proposed method. The proposed PCPS exhibits a minimal thickness and demonstrates high design flexibility in focal length and incident wavelengths, providing new opportunities for the development of achromatic imaging systems and RGB holographic displays.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 5","pages":"285-288"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884000/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Achromatic performance is crucial for a variety of multi-wavelength optical imaging applications due to conventional diffractive optical elements suffer from large chromatic aberration. Here, we introduce a multi-wavelength achromatic imaging system utilizing a pleochroic confocal photon sieve (PCPS). In this technique, three foci at three different wavelengths are designed to coexist at various spatial locations on the same plane. Characterization results demonstrate achromatic focus performance at specified wavelengths, and the optimal full width at half maximum (FWHM) of point spread function (PSF) indicate that our device can achieve an optical imaging resolution of $5~\mu $ m across all designated wavelengths. Furthermore, we also explored the potential application of the PCPS in single-frame multi-wavelength coherent diffraction imaging (CDI), and preliminary experimental results are presented to confirm the effectiveness of the proposed method. The proposed PCPS exhibits a minimal thickness and demonstrates high design flexibility in focal length and incident wavelengths, providing new opportunities for the development of achromatic imaging systems and RGB holographic displays.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.