A-site cations in stannate perovskites affect their performance in catalysing CO2 electroreduction†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2025-01-21 DOI:10.1039/D4QM01042F
Guoqing Wang, Hao Yuan, Haiyan Zhang, Ruigang Liu, Shanhu Yue, Jiaxu Yan, Xiaoji Xie and Min Lu
{"title":"A-site cations in stannate perovskites affect their performance in catalysing CO2 electroreduction†","authors":"Guoqing Wang, Hao Yuan, Haiyan Zhang, Ruigang Liu, Shanhu Yue, Jiaxu Yan, Xiaoji Xie and Min Lu","doi":"10.1039/D4QM01042F","DOIUrl":null,"url":null,"abstract":"<p >Stannate perovskites (MSnO<small><sub>3</sub></small>), benefiting from their high production of HCOOH and the perovskite structure-enabled tunability of properties, are emerging as promising catalysts for electrochemical CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R). However, optimizing the catalytic performance of MSnO<small><sub>3</sub></small> for CO<small><sub>2</sub></small>R remains largely unexplored. Here, we systematically study the catalytic performance of MSnO<small><sub>3</sub></small> with a distinct A-site cation, M (M = Ba, Sr, and Ca), for CO<small><sub>2</sub></small>R. Our experimental results show that the M cation dramatically affects the catalytic performance, especially the selectivity and stability. In particular, the CaSnO<small><sub>3</sub></small>-based catalyst exhibits the highest selectivity to HCOOH and stability but the lowest activity. Further theoretical investigations reveal that the A-site cation can affect the selectivity of MSnO<small><sub>3</sub></small> for the CO<small><sub>2</sub></small>R reaction and may impact the stability of MSnO<small><sub>3</sub></small>. Both experimental and theoretical findings reveal that stannate perovskites can be effective and selective catalysts for CO<small><sub>2</sub></small>R, while their stability needs to be considered carefully. These results should shed light on the rational design of perovskite catalysts with desired performance for CO<small><sub>2</sub></small>R.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 5","pages":" 856-865"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01042f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stannate perovskites (MSnO3), benefiting from their high production of HCOOH and the perovskite structure-enabled tunability of properties, are emerging as promising catalysts for electrochemical CO2 reduction (CO2R). However, optimizing the catalytic performance of MSnO3 for CO2R remains largely unexplored. Here, we systematically study the catalytic performance of MSnO3 with a distinct A-site cation, M (M = Ba, Sr, and Ca), for CO2R. Our experimental results show that the M cation dramatically affects the catalytic performance, especially the selectivity and stability. In particular, the CaSnO3-based catalyst exhibits the highest selectivity to HCOOH and stability but the lowest activity. Further theoretical investigations reveal that the A-site cation can affect the selectivity of MSnO3 for the CO2R reaction and may impact the stability of MSnO3. Both experimental and theoretical findings reveal that stannate perovskites can be effective and selective catalysts for CO2R, while their stability needs to be considered carefully. These results should shed light on the rational design of perovskite catalysts with desired performance for CO2R.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover Recent advances in tailored chitosan-based hydrogels for bone regeneration and repair Recent advances in nanozyme-based materials for environmental pollutant detection and remediation Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1