Coastal Storm Risk Reduction Using Steel Mesh Revetments: Field Application and Preliminary Physical Experiments

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS pure and applied geophysics Pub Date : 2024-12-19 DOI:10.1007/s00024-024-03621-x
Mohammad Heidarzadeh, Mahan Sheibani, Roberto J. Luis-Fonseca
{"title":"Coastal Storm Risk Reduction Using Steel Mesh Revetments: Field Application and Preliminary Physical Experiments","authors":"Mohammad Heidarzadeh,&nbsp;Mahan Sheibani,&nbsp;Roberto J. Luis-Fonseca","doi":"10.1007/s00024-024-03621-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study coastal storm risk reduction using a steel mesh revetment system known as Tecco Cell (TC). This system consists of high-tensile stainless steel mesh filled with rock and securely fastened with tension rods. This coastal defence system is implemented in Beesands (UK), and its performance is studied here through preliminary laboratory physical modelling. The TC revetment in Beesands was installed in 2016 and has effectively protected the coast since then. We conducted 32 physical tests to assess performance criteria of a TC model in comparison to a rock armour (RA) model. Wave runup is used as the performance criterion in this study, as it is one of the key factors in coastal risk reduction research. Results showed that the TC model consistently yielded smaller runup than the RA model, with an average runup reduction of 15%. The mean spectral ratio index was employed as a measure of wave reflection and oscillations. Results indicated a mean index of 20.5 for the RA model and 3.8 for the TC model, demonstrating the potential for higher stability with the TC revetment. We established relationships between dimensionless runup and surf similarity and formulated a runup law.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 1","pages":"289 - 308"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-024-03621-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03621-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study coastal storm risk reduction using a steel mesh revetment system known as Tecco Cell (TC). This system consists of high-tensile stainless steel mesh filled with rock and securely fastened with tension rods. This coastal defence system is implemented in Beesands (UK), and its performance is studied here through preliminary laboratory physical modelling. The TC revetment in Beesands was installed in 2016 and has effectively protected the coast since then. We conducted 32 physical tests to assess performance criteria of a TC model in comparison to a rock armour (RA) model. Wave runup is used as the performance criterion in this study, as it is one of the key factors in coastal risk reduction research. Results showed that the TC model consistently yielded smaller runup than the RA model, with an average runup reduction of 15%. The mean spectral ratio index was employed as a measure of wave reflection and oscillations. Results indicated a mean index of 20.5 for the RA model and 3.8 for the TC model, demonstrating the potential for higher stability with the TC revetment. We established relationships between dimensionless runup and surf similarity and formulated a runup law.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
期刊最新文献
Correction: Assessing the Spatial and Temporal Characteristics of Meteorological Drought in Afghanistan Novel Optimal Staggered Grid Finite Difference Scheme Based on Gram–Schmidt Procedure for Acoustic Wave Modelling Estimation of the Gutenberg-Richter Seismic Hazard Parameters: A Way to Take into Account Isolated Earthquakes—Application to the Alps Domain Microzonation Through Seismic and Geotechnical Vulnerability Assessment: Recommendation of Foundation Selection Guidelines for the Srinagar Metropolitan Region Elastic Impedance Reconstruction Using Compound First- and Second-Order Total Variation Regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1