Pedro M. Ferreira, David Caçador, Miguel A. Machado, Marta S. Carvalho, Pedro Vilaça, Gonçalo Sorger, Francisco Werley Cipriano Farias, Arthur Ribeiro Figueiredo, Catarina Vidal
{"title":"Smart piezoelectric composite: impact of piezoelectric ceramic microparticles embedded in heat-treated 7075-T651 aluminium alloy","authors":"Pedro M. Ferreira, David Caçador, Miguel A. Machado, Marta S. Carvalho, Pedro Vilaça, Gonçalo Sorger, Francisco Werley Cipriano Farias, Arthur Ribeiro Figueiredo, Catarina Vidal","doi":"10.1007/s10999-024-09731-7","DOIUrl":null,"url":null,"abstract":"<div><p>Significant advances have been made in material synthesis in the last two decades, with a focus on polymers, ceramics, metals, and smart materials. Piezoelectric-based smart materials generate an electric voltage in response to loads, enabling distributed monitoring in critical structural parts. Friction stir processing (FSP) is a versatile approach that can enhance material performance in various engineering fields. The primary objective of the current research is to examine the sensorial properties of heat-treated AA7075-T651 aluminium plates that have been included with Lead Zirconate Titanate (PZT) and Barium Titanate (BT) particles via FSP. This study includes a comparative analysis of sensitivities with AA5083-H111 self-sensing material, metallographic and physicochemical characterization, and an assessment of the mechanical properties impacted by the incorporation of piezoelectric particles. The sensitivity of AA7075-PZT was found to be significantly higher than that of AA7075-BT. AA7075-PZT achieved a maximum sensitivity of 15.27 × 10<sup>−4</sup> μV/MPa while AA7075-BT had a sensitivity of only 7.28 × 10<sup>−4</sup> μV/MPa, which is 52% lower. Microhardness and uniaxial tensile tests demonstrated that the presence of particles has an influence on both mechanical strength and electrical conductivity of aluminium components, as opposed to those that do not have particles. The complete investigation intends to give significant insights into the performance and prospective uses of these innovative smart materials, therefore advancing materials science and engineering.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"21 1","pages":"155 - 180"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-024-09731-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-024-09731-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Significant advances have been made in material synthesis in the last two decades, with a focus on polymers, ceramics, metals, and smart materials. Piezoelectric-based smart materials generate an electric voltage in response to loads, enabling distributed monitoring in critical structural parts. Friction stir processing (FSP) is a versatile approach that can enhance material performance in various engineering fields. The primary objective of the current research is to examine the sensorial properties of heat-treated AA7075-T651 aluminium plates that have been included with Lead Zirconate Titanate (PZT) and Barium Titanate (BT) particles via FSP. This study includes a comparative analysis of sensitivities with AA5083-H111 self-sensing material, metallographic and physicochemical characterization, and an assessment of the mechanical properties impacted by the incorporation of piezoelectric particles. The sensitivity of AA7075-PZT was found to be significantly higher than that of AA7075-BT. AA7075-PZT achieved a maximum sensitivity of 15.27 × 10−4 μV/MPa while AA7075-BT had a sensitivity of only 7.28 × 10−4 μV/MPa, which is 52% lower. Microhardness and uniaxial tensile tests demonstrated that the presence of particles has an influence on both mechanical strength and electrical conductivity of aluminium components, as opposed to those that do not have particles. The complete investigation intends to give significant insights into the performance and prospective uses of these innovative smart materials, therefore advancing materials science and engineering.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.