Nayun Jia, Yin-Da Guo, Gui-Rong Liang, Zhan-Feng Mai, Xin Zhang
{"title":"Superradiant growth anomaly magnification in evolution of vector bosonic condensates bounded by a Kerr black hole with near-horizon reflection","authors":"Nayun Jia, Yin-Da Guo, Gui-Rong Liang, Zhan-Feng Mai, Xin Zhang","doi":"10.1007/s11433-024-2602-0","DOIUrl":null,"url":null,"abstract":"<div><p>Ultralight vector particles can form evolving condensates around a Kerr black hole (BH) due to superradiant instability. We study the effect of near-horizon reflection on the evolution of this system: by matching three pieces of asymptotic expansions of the Proca equation in Kerr metric and considering the leading order in the electric mode, we present explicit analytical expressions for the corrected spectrum and the superradiant instability rates. Particularly, in high-spin BH cases, we identify an anomalous situation where the superradiance rate is temporarily increased by the reflection parameter <i>ℛ</i>, which also occurs in the scalar scenario, but is largely magnified in vector condensates due to a faster growth rate in dominant mode. We point out that the condition for the growth anomaly in the adiabatic case is that information carried per particle exceeds a certain value <span>\\(\\delta I/\\delta N >2\\pi k_{\\mathrm{B}}\\sqrt{(1+\\mathcal{R})/(1-\\mathcal{R})}\\)</span>. We further construct several featured quantities to illustrate it, and formalize the anomaly-induced gravitational wave strain deformation.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2602-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultralight vector particles can form evolving condensates around a Kerr black hole (BH) due to superradiant instability. We study the effect of near-horizon reflection on the evolution of this system: by matching three pieces of asymptotic expansions of the Proca equation in Kerr metric and considering the leading order in the electric mode, we present explicit analytical expressions for the corrected spectrum and the superradiant instability rates. Particularly, in high-spin BH cases, we identify an anomalous situation where the superradiance rate is temporarily increased by the reflection parameter ℛ, which also occurs in the scalar scenario, but is largely magnified in vector condensates due to a faster growth rate in dominant mode. We point out that the condition for the growth anomaly in the adiabatic case is that information carried per particle exceeds a certain value \(\delta I/\delta N >2\pi k_{\mathrm{B}}\sqrt{(1+\mathcal{R})/(1-\mathcal{R})}\). We further construct several featured quantities to illustrate it, and formalize the anomaly-induced gravitational wave strain deformation.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.