{"title":"Potential immobilization of Cs and Sr within perovskite-type CsSr2Ta3O10 ceramic waste forms","authors":"Yifan Li, Shuang Cao, Qingming Yang, Yuannuo Wang, Jingyang Wang, Caishan Jiao, Meng Zhang, Lei Zhang","doi":"10.1007/s10967-024-09892-x","DOIUrl":null,"url":null,"abstract":"<div><p>The removal of Cs and Sr from high level radioactive waste is very important for ecological protection. However, simultaneous immobilization of Cs and Sr is rarely reported. In this work, a perovskite structure CsSr<sub>2</sub>Ta<sub>3</sub>O<sub>10</sub> was synthesized by molten salt method. CsSr<sub>2</sub>Ta<sub>3</sub>O<sub>10</sub> has good thermal stability up to 900 °C at least. Under the γ irradiation of Co-60, most of the material maintained its structural integrity. CsSr<sub>2</sub>Ta<sub>3</sub>O<sub>10</sub> demonstrates a wide range of pH durability, where Cs is stable in the pH range from 4 to 12 and Sr from 2 to 12. Its frame structure remains stable in the pH range from 2 to 12 and will not be decomposed. Further sintering of CsSr<sub>2</sub>Ta<sub>3</sub>O<sub>10</sub> ceramic waste forms results in a high density of 93% − 95%. Moreover, leaching experiments conclude that the long-term leaching rates of Cs and Sr begin to stabilize after 14 days, reaching the order of 10<sup>0</sup> and 10<sup>−3</sup> g·m<sup>−2</sup>·d<sup>−1</sup>. These results provide a possibility for the simultaneous immobilization of Cs and Sr.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 2","pages":"1287 - 1297"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-024-09892-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The removal of Cs and Sr from high level radioactive waste is very important for ecological protection. However, simultaneous immobilization of Cs and Sr is rarely reported. In this work, a perovskite structure CsSr2Ta3O10 was synthesized by molten salt method. CsSr2Ta3O10 has good thermal stability up to 900 °C at least. Under the γ irradiation of Co-60, most of the material maintained its structural integrity. CsSr2Ta3O10 demonstrates a wide range of pH durability, where Cs is stable in the pH range from 4 to 12 and Sr from 2 to 12. Its frame structure remains stable in the pH range from 2 to 12 and will not be decomposed. Further sintering of CsSr2Ta3O10 ceramic waste forms results in a high density of 93% − 95%. Moreover, leaching experiments conclude that the long-term leaching rates of Cs and Sr begin to stabilize after 14 days, reaching the order of 100 and 10−3 g·m−2·d−1. These results provide a possibility for the simultaneous immobilization of Cs and Sr.
期刊介绍:
An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.