{"title":"Tuning Structural and Topological Properties of Silicon-Based Orthorhombic Crystals for Enhanced Radiation Shielding","authors":"Z. Y. Khattari","doi":"10.1007/s12633-024-03218-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores γ-radiations shield character of select Si-based orthorhombic crystals, specifically CaSrSi, BaMgSi, MgAlSi, and MgSrSi, to assess their potential for γ-ray shielding applications. Utilizing Hirshfeld topological geometries (HTGs), investigation of the structural and compositional characteristics that contributes to these materials' effectiveness in attenuating high-energy photons. By analyzing the essential parameters such as the MAC, LAC, and Z<sub>eff</sub>, the study demonstrate that BaMgSi crystal, in particular, exhibits a superior capacity for radiation attenuation due to its higher MAC ∈ [0.039, 48.280] cm<sup>2</sup>.g<sup>−1</sup>, LAC ∈ [0.144, 179] cm<sup>−1</sup> and Z<sub>eff</sub> ∈ [37, 48] values in the studied energy range. The findings reveal a correlation between charge densities of HTGs and LAC values, indicating that the optimization of these topological parameters enhances the materials' shielding performance. The study highlights the potential of these crystals for various applications where effective radiation shielding is crucial. This research provides important prospective into designing of advanced crystals with improved attenuation capabilities for future innovations in radiation protection technologies.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 3","pages":"673 - 683"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03218-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores γ-radiations shield character of select Si-based orthorhombic crystals, specifically CaSrSi, BaMgSi, MgAlSi, and MgSrSi, to assess their potential for γ-ray shielding applications. Utilizing Hirshfeld topological geometries (HTGs), investigation of the structural and compositional characteristics that contributes to these materials' effectiveness in attenuating high-energy photons. By analyzing the essential parameters such as the MAC, LAC, and Zeff, the study demonstrate that BaMgSi crystal, in particular, exhibits a superior capacity for radiation attenuation due to its higher MAC ∈ [0.039, 48.280] cm2.g−1, LAC ∈ [0.144, 179] cm−1 and Zeff ∈ [37, 48] values in the studied energy range. The findings reveal a correlation between charge densities of HTGs and LAC values, indicating that the optimization of these topological parameters enhances the materials' shielding performance. The study highlights the potential of these crystals for various applications where effective radiation shielding is crucial. This research provides important prospective into designing of advanced crystals with improved attenuation capabilities for future innovations in radiation protection technologies.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.