Transcription factor KUA1 positively regulates tomato resistance against Phytophthora infestans by fine-tuning reactive oxygen species accumulation

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-02-24 DOI:10.1111/tpj.70007
Zhicheng Wang, Ruili Lv, Yuhui Hong, Chenglin Su, Zhengjie Wang, Jiaxuan Zhu, Ruirui Yang, Ruiming Wang, Yan Li, Jun Meng, Yushi Luan
{"title":"Transcription factor KUA1 positively regulates tomato resistance against Phytophthora infestans by fine-tuning reactive oxygen species accumulation","authors":"Zhicheng Wang,&nbsp;Ruili Lv,&nbsp;Yuhui Hong,&nbsp;Chenglin Su,&nbsp;Zhengjie Wang,&nbsp;Jiaxuan Zhu,&nbsp;Ruirui Yang,&nbsp;Ruiming Wang,&nbsp;Yan Li,&nbsp;Jun Meng,&nbsp;Yushi Luan","doi":"10.1111/tpj.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tomato is a horticultural crop of global significance. However, the pathogen <i>Phytophthora infestans</i> causing the late blight disease imposes a severe threat to tomato production and quality. Many transcription factors (TFs) are known to be involved in responses to plant pathogens, however, the key TFs in tomato resistant to <i>P. infestans</i> remain to be explored. Here, we identified six TFs related to tomato responses to <i>P. infestans</i> infection. In particular, we found overexpression of <i>SlKUA1</i> could significantly improve tomato resistance to <i>P. infestans</i>; moreover, reactive oxygen species (ROS) accumulation was significantly increased in OE-<i>SlKUA1</i> compared with WT after <i>P. infestans</i> infection along with higher expression of <i>SlRBOHD</i>. Surprisingly, we found that SlKUA1 could not bind to the promoter of <i>SlRBOHD</i>. Further experiments revealed that <i>SlKUA1</i> inhibited the expression of <i>SlPrx1</i> by binding to its promoter region, thereby decreasing POD enzyme abundance and causing compromised ROS scavenge. Meanwhile, we identified that SlKUA1 also binds to the promoter region of two plant immune-related genes, <i>SlMAPK7</i> and <i>SlRLP4</i>, promoting their expression and enhancing tomato disease resistance. Together, our results have unraveled that <i>SlKUA1</i> can boost tomato resistance against <i>P. infestans</i> through quantitatively regulating ROS accumulation and related immune gene expression, thus, providing promising new targets for breeding late blight resistance tomatoes.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tomato is a horticultural crop of global significance. However, the pathogen Phytophthora infestans causing the late blight disease imposes a severe threat to tomato production and quality. Many transcription factors (TFs) are known to be involved in responses to plant pathogens, however, the key TFs in tomato resistant to P. infestans remain to be explored. Here, we identified six TFs related to tomato responses to P. infestans infection. In particular, we found overexpression of SlKUA1 could significantly improve tomato resistance to P. infestans; moreover, reactive oxygen species (ROS) accumulation was significantly increased in OE-SlKUA1 compared with WT after P. infestans infection along with higher expression of SlRBOHD. Surprisingly, we found that SlKUA1 could not bind to the promoter of SlRBOHD. Further experiments revealed that SlKUA1 inhibited the expression of SlPrx1 by binding to its promoter region, thereby decreasing POD enzyme abundance and causing compromised ROS scavenge. Meanwhile, we identified that SlKUA1 also binds to the promoter region of two plant immune-related genes, SlMAPK7 and SlRLP4, promoting their expression and enhancing tomato disease resistance. Together, our results have unraveled that SlKUA1 can boost tomato resistance against P. infestans through quantitatively regulating ROS accumulation and related immune gene expression, thus, providing promising new targets for breeding late blight resistance tomatoes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
EIL (ethylene-insensitive 3-like) transcription factors in apple affect both ethylene- and cold response-dependent fruit ripening RNAi and genome editing of sugarcane: Progress and prospects Developing the rice ideotype: Optimizing traits for methane mitigation and sustainable yield Characterization of an α-ketoglutarate-dependent oxygenase involved in converting 2-(2-phenylethyl)chromones into 2-styrylchromones in agarwood Mutagenesis of AcSQBP9 in kiwifruit results in reduction of malate via alteration of the expression of a plastidial malate dehydrogenase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1