Whole-Profile Soil Carbon Responses to Concurrent Warming and Precipitation Changes Across Global Biomes

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-02-25 DOI:10.1111/gcb.70105
Mingming Wang, Shuai Zhang, Xiaowei Guo, Guocheng Wang, Jianyang Xia, Liujun Xiao, Zhongkui Luo
{"title":"Whole-Profile Soil Carbon Responses to Concurrent Warming and Precipitation Changes Across Global Biomes","authors":"Mingming Wang,&nbsp;Shuai Zhang,&nbsp;Xiaowei Guo,&nbsp;Guocheng Wang,&nbsp;Jianyang Xia,&nbsp;Liujun Xiao,&nbsp;Zhongkui Luo","doi":"10.1111/gcb.70105","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The joint effects of simultaneous warming and precipitation shifts on soil organic carbon (SOC)—the largest terrestrial carbon pool—remain poorly understood across large spatial extents. By evaluating a global dataset of SOC measurements in the top meter of soil through a space-for-change substitution approach, we show that, averaging across the globe, increased precipitation compensates for warming-induced SOC reductions regardless of soil depth and vice versa. Although additive effects between these two factors are predominant, negative interactive effects, which exacerbate SOC losses, are also common, particularly in tropical and subtropical grasslands/savannas and Mediterranean/montane shrublands. SOC responses vary widely across the globe, primarily correlated to baseline SOC content and local climatic conditions. Notably, SOC responses in tundra systems are opposite the responses in other ecosystems, showing positive and negative responses to warming and precipitation increases, respectively. Under a scenario of 2°C air warming with projected precipitation changes, global SOC stocks in the 0–1 m depth are projected to decrease by 13.1% ± 6.6% (mean ± 95% confidence interval, or 351 ± 100 Pg C). These results demonstrate that accurately predicting SOC dynamics under climate change necessitates explicit consideration of local climatic conditions and existing SOC content in relation to concurrent precipitation shifts and warming.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70105","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The joint effects of simultaneous warming and precipitation shifts on soil organic carbon (SOC)—the largest terrestrial carbon pool—remain poorly understood across large spatial extents. By evaluating a global dataset of SOC measurements in the top meter of soil through a space-for-change substitution approach, we show that, averaging across the globe, increased precipitation compensates for warming-induced SOC reductions regardless of soil depth and vice versa. Although additive effects between these two factors are predominant, negative interactive effects, which exacerbate SOC losses, are also common, particularly in tropical and subtropical grasslands/savannas and Mediterranean/montane shrublands. SOC responses vary widely across the globe, primarily correlated to baseline SOC content and local climatic conditions. Notably, SOC responses in tundra systems are opposite the responses in other ecosystems, showing positive and negative responses to warming and precipitation increases, respectively. Under a scenario of 2°C air warming with projected precipitation changes, global SOC stocks in the 0–1 m depth are projected to decrease by 13.1% ± 6.6% (mean ± 95% confidence interval, or 351 ± 100 Pg C). These results demonstrate that accurately predicting SOC dynamics under climate change necessitates explicit consideration of local climatic conditions and existing SOC content in relation to concurrent precipitation shifts and warming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States Untangling the Complexity of Climate Change Effects on Plant Reproductive Traits and Pollinators: A Systematic Global Synthesis Tree Diversity Increases Carbon Stocks and Fluxes Above—But Not Belowground in a Tropical Forest Experiment Whole-Profile Soil Carbon Responses to Concurrent Warming and Precipitation Changes Across Global Biomes Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1