Consistency Regularization Semisupervised Learning for PolSAR Image Classification

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2025-02-25 DOI:10.1155/int/7261699
Yu Wang, Shan Jiang, Weijie Li
{"title":"Consistency Regularization Semisupervised Learning for PolSAR Image Classification","authors":"Yu Wang,&nbsp;Shan Jiang,&nbsp;Weijie Li","doi":"10.1155/int/7261699","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Polarimetric Synthetic Aperture Radar (PolSAR) images have emerged as an important data source for land cover classification research due to their all-weather, all-day monitoring capabilities. Deep learning-based classification methods have recently gained significant attention in PolSAR image classification since they have demonstrated excellent performance in the computer vision field. However, the main issue with deep learning-based methods is that they require large amounts of training data. Additionally, the scarcity of labeled data is a significant challenge in the PolSAR image field. Therefore, in this article, we proposed an advanced semisupervised deep self-training algorithm for PolSAR image classification, which utilized both labeled and unlabeled data in a semisupervised way. Then, a training optimization method and a high-confidence sample selection strategy are proposed by integrating consistency regularization. In addition, to achieve stronger feature extraction capabilities, we designed a deep learning-based classifier that combines residual blocks with an efficient multiscale attention module. We have conducted experiments on three popular real PolSAR datasets: 1989 Flevoland, 1991 Flevoland, and Oberpfaffenhofen. The classification results on these datasets demonstrated that the proposed method outperforms several other comparison algorithms, with overall accuracy up to 99.3%, 99.15%, and 94.12%, respectively. These results demonstrated the effectiveness of the proposed method for PolSAR image classification.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7261699","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/7261699","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polarimetric Synthetic Aperture Radar (PolSAR) images have emerged as an important data source for land cover classification research due to their all-weather, all-day monitoring capabilities. Deep learning-based classification methods have recently gained significant attention in PolSAR image classification since they have demonstrated excellent performance in the computer vision field. However, the main issue with deep learning-based methods is that they require large amounts of training data. Additionally, the scarcity of labeled data is a significant challenge in the PolSAR image field. Therefore, in this article, we proposed an advanced semisupervised deep self-training algorithm for PolSAR image classification, which utilized both labeled and unlabeled data in a semisupervised way. Then, a training optimization method and a high-confidence sample selection strategy are proposed by integrating consistency regularization. In addition, to achieve stronger feature extraction capabilities, we designed a deep learning-based classifier that combines residual blocks with an efficient multiscale attention module. We have conducted experiments on three popular real PolSAR datasets: 1989 Flevoland, 1991 Flevoland, and Oberpfaffenhofen. The classification results on these datasets demonstrated that the proposed method outperforms several other comparison algorithms, with overall accuracy up to 99.3%, 99.15%, and 94.12%, respectively. These results demonstrated the effectiveness of the proposed method for PolSAR image classification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
Consistency Regularization Semisupervised Learning for PolSAR Image Classification Strategies to Mitigate Model Drift of a Machine Learning Prediction Model for Acute Kidney Injury in General Hospitalization Exploring Batch Normalization’s Impact on Dense Layers of Multiclass and Multilabel Classifiers Modeling and Recognition of Retinal Blood Vessels Tortuosity in ROP Plus Disease: A Hybrid Segmentation–Classification Scheme Intelligent Sensing and Identification of Spectrum Anomalies With Alpha-Stable Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1