Sebastian Pusse, Bart-Jan Niebuur, Tobias Kraus, Volker Presser, Bizan N Balzer, Markus Gallei
{"title":"Synthesis and Self-Assembly of Pore-Forming Three-Arm Amphiphilic Block Copolymers.","authors":"Sebastian Pusse, Bart-Jan Niebuur, Tobias Kraus, Volker Presser, Bizan N Balzer, Markus Gallei","doi":"10.1002/marc.202500077","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of an amphiphilic three-arm block copolymer (AB)<sub>3</sub>-BCP, which consists of poly(methyl methacrylate) (PMMA) and poly(butyl methacrylate) (PBMA) in the hydrophobic inner block, is reported. The hydrophilic block segment is based on poly(2-hydroxyethyl methacrylate) (PHEMA) originating from 2-(trimethylsiloxyl)ethyl methacrylate (HEMA-TMS). The preparation is carried out in two steps using a core-first approach. Using atom transfer radical polymerization (ATRP) as a controlled polymerization technique, three (AB)<sub>3</sub>-BPCs with HEMA contents of 15 to 38 mol<sup>-1</sup> % are prepared, applying different reaction conditions. Porous structures are generated from these BCPs by applying a self-assembly and nonsolvent-induced phase separation (SNIPS) protocol. Complex surface structures are observed using scanning electron microscopy (SEM). Bulk morphologies are investigated for a better understanding of the underlying self-assembly. For PHEMA-rich (AB)<sub>3</sub>-BCPs, non-regular lamellar microphases are observed in transmission electron microscopy (TEM) and confirmed by small-angle X-ray scattering (SAXS). The porous structures and their expected swelling characteristics are analyzed using atomic force microscopy (AFM) in air and water. Time-resolved measurements in water indicate a rapid swelling after immersion into the water bath. The present study paves the way for exciting porous materials based on the herein synthesized amphiphilic three-arm block copolymers useful for applications as absorber materials and coatings.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500077"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500077","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of an amphiphilic three-arm block copolymer (AB)3-BCP, which consists of poly(methyl methacrylate) (PMMA) and poly(butyl methacrylate) (PBMA) in the hydrophobic inner block, is reported. The hydrophilic block segment is based on poly(2-hydroxyethyl methacrylate) (PHEMA) originating from 2-(trimethylsiloxyl)ethyl methacrylate (HEMA-TMS). The preparation is carried out in two steps using a core-first approach. Using atom transfer radical polymerization (ATRP) as a controlled polymerization technique, three (AB)3-BPCs with HEMA contents of 15 to 38 mol-1 % are prepared, applying different reaction conditions. Porous structures are generated from these BCPs by applying a self-assembly and nonsolvent-induced phase separation (SNIPS) protocol. Complex surface structures are observed using scanning electron microscopy (SEM). Bulk morphologies are investigated for a better understanding of the underlying self-assembly. For PHEMA-rich (AB)3-BCPs, non-regular lamellar microphases are observed in transmission electron microscopy (TEM) and confirmed by small-angle X-ray scattering (SAXS). The porous structures and their expected swelling characteristics are analyzed using atomic force microscopy (AFM) in air and water. Time-resolved measurements in water indicate a rapid swelling after immersion into the water bath. The present study paves the way for exciting porous materials based on the herein synthesized amphiphilic three-arm block copolymers useful for applications as absorber materials and coatings.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.