Recyclable Supramolecular Nanofibrous Composite Membranes for Efficient Air Filtration.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-02-24 DOI:10.1002/marc.202401019
Wenjing Sun, Senjie Dong, Meihui Gao, Han Diao, Yuqian Song, Longfei Zhang, Hongmiao Wang, Ding Yuan
{"title":"Recyclable Supramolecular Nanofibrous Composite Membranes for Efficient Air Filtration.","authors":"Wenjing Sun, Senjie Dong, Meihui Gao, Han Diao, Yuqian Song, Longfei Zhang, Hongmiao Wang, Ding Yuan","doi":"10.1002/marc.202401019","DOIUrl":null,"url":null,"abstract":"<p><p>Developing high-performance, low-resistance, and recyclable air filtration materials remains a formidable challenge. Herein, silica nanoparticles (SiO<sub>2</sub> NPs) and supramolecular complexes consisting of melamine (MA) and trimesic acid (TMA) are constructed as SiO<sub>2</sub>@MA·TMA supramolecular nanofibrous composite membrane via a thermally induced precursor process (TIPC) for efficient particulate matter (PM) removal. Hydrophilic SiO<sub>2</sub> NPs as additional nucleation mediators can not only promote the growth of MA·TMA nanocrystalline fibers by shortening the interfacial free energy and thus reducing the nucleation barrier, but also increase fiber surface roughness thus constructing hierarchical structure of membrane. Under the synergy of MA·TMA nanocrystalline fibers and SiO<sub>2</sub> NPs, the membranes possess high filtration efficiency of 99.82% for PM<sub>1</sub>, 99.96% for PM<sub>2.5</sub>, and 99.98% for PM<sub>10</sub> with low air resistance (153 Pa, <0.15% of standard atmospheric pressure). Taking advantage of the thermally reversible property of supramolecular complexes, the closed-loop recycling of MA·TMA nanocrystalline fibers and SiO<sub>2</sub> NPs are realized. Only green solvents (water and ethanol) are involved in the TIPC process, making this strategy environmentally-friendly and cost-effective. This work not only provides an innovative strategy for the preparation of supramolecular nanofibrous composite materials, but opens an avenue for the development of recyclable high-performance air filters.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401019"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401019","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance, low-resistance, and recyclable air filtration materials remains a formidable challenge. Herein, silica nanoparticles (SiO2 NPs) and supramolecular complexes consisting of melamine (MA) and trimesic acid (TMA) are constructed as SiO2@MA·TMA supramolecular nanofibrous composite membrane via a thermally induced precursor process (TIPC) for efficient particulate matter (PM) removal. Hydrophilic SiO2 NPs as additional nucleation mediators can not only promote the growth of MA·TMA nanocrystalline fibers by shortening the interfacial free energy and thus reducing the nucleation barrier, but also increase fiber surface roughness thus constructing hierarchical structure of membrane. Under the synergy of MA·TMA nanocrystalline fibers and SiO2 NPs, the membranes possess high filtration efficiency of 99.82% for PM1, 99.96% for PM2.5, and 99.98% for PM10 with low air resistance (153 Pa, <0.15% of standard atmospheric pressure). Taking advantage of the thermally reversible property of supramolecular complexes, the closed-loop recycling of MA·TMA nanocrystalline fibers and SiO2 NPs are realized. Only green solvents (water and ethanol) are involved in the TIPC process, making this strategy environmentally-friendly and cost-effective. This work not only provides an innovative strategy for the preparation of supramolecular nanofibrous composite materials, but opens an avenue for the development of recyclable high-performance air filters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Transparent and Recyclable Ionogels Enabled by Dynamic Networks Containing Poly(Thioctic Acid) for Flexible Sensors. Lanthanide Coordinated Poly(Thioctic Acid) Materials with Enhanced Strength and Room Temperature Self-Healing Performance. Sustainable Production of Ion-Conductive Polyelectrolytes by Ultrafast Photopolymerization of Lithium, Sodium, and Potassium Salts/Amide-Based Deep Eutectic Monomers. Synthesis and Self-Assembly of Pore-Forming Three-Arm Amphiphilic Block Copolymers. Recyclable Supramolecular Nanofibrous Composite Membranes for Efficient Air Filtration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1