Fast and stable NH4+ storage in multielectron H-bonding-acceptor organic molecules for aqueous zinc batteries†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-02-13 DOI:10.1039/D4MH01809E
Qi Huang, Ting Shi, Yang Qin, Yaowei Jin, Lu Huang, Yaojie Sun, Chengmin Hu, Ziyang Song and Fengxian Xie
{"title":"Fast and stable NH4+ storage in multielectron H-bonding-acceptor organic molecules for aqueous zinc batteries†","authors":"Qi Huang, Ting Shi, Yang Qin, Yaowei Jin, Lu Huang, Yaojie Sun, Chengmin Hu, Ziyang Song and Fengxian Xie","doi":"10.1039/D4MH01809E","DOIUrl":null,"url":null,"abstract":"<p >High-capacity small organic compounds are easily dissolved in aqueous electrolytes, resulting in limited cycling stability of Zn-organic batteries (ZOBs). To address this issue, we proposed constructing superstable lock-and-key hydrogen-bonding networks between the 2,7-dinitrophenanthraquinone (DNPQ) cathode and NH<small><sub>4</sub></small><small><sup>+</sup></small> charge carriers to achieve ultrastable ZOBs. DNPQ, with its sextuple-active carbonyl/nitro motifs (H-bonding acceptors), was found to be uniquely prone to redox-coupling with tetrahedral NH<small><sub>4</sub></small><small><sup>+</sup></small> ions (H-bonding donors) while excluding sluggish Zn<small><sup>2+</sup></small> ions, owing to a lower activation energy (0.32 <em>vs.</em> 0.43 eV). NH<small><sub>4</sub></small><small><sup>+</sup></small>-coordinated H-bonding electrochemistry overcame the instability of the DNPQ cathode in aqueous electrolytes and enabled rapid redox kinetics of non-metal NH<small><sub>4</sub></small><small><sup>+</sup></small> charge carriers. As a result, a three-step 3e<small><sup>−</sup></small> NH<small><sub>4</sub></small><small><sup>+</sup></small> coordination with the DNPQ cathode achieved large-current survivability (50 A g<small><sup>−1</sup></small>) and long-lasting cyclability (80 000 cycles) for ZOBs. This work broadens the potential for developing high-performance H-bonding-stabilized organics for advanced ZOBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 10","pages":" 3505-3514"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01809e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-capacity small organic compounds are easily dissolved in aqueous electrolytes, resulting in limited cycling stability of Zn-organic batteries (ZOBs). To address this issue, we proposed constructing superstable lock-and-key hydrogen-bonding networks between the 2,7-dinitrophenanthraquinone (DNPQ) cathode and NH4+ charge carriers to achieve ultrastable ZOBs. DNPQ, with its sextuple-active carbonyl/nitro motifs (H-bonding acceptors), was found to be uniquely prone to redox-coupling with tetrahedral NH4+ ions (H-bonding donors) while excluding sluggish Zn2+ ions, owing to a lower activation energy (0.32 vs. 0.43 eV). NH4+-coordinated H-bonding electrochemistry overcame the instability of the DNPQ cathode in aqueous electrolytes and enabled rapid redox kinetics of non-metal NH4+ charge carriers. As a result, a three-step 3e NH4+ coordination with the DNPQ cathode achieved large-current survivability (50 A g−1) and long-lasting cyclability (80 000 cycles) for ZOBs. This work broadens the potential for developing high-performance H-bonding-stabilized organics for advanced ZOBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水溶液锌电池中多电子氢键受体有机分子中NH4+的快速稳定存储。
高容量小有机化合物容易溶解于水溶液中,导致有机锌电池(ZOBs)的循环稳定性有限。为了解决这一问题,我们提出了在2,7-二硝基苯蒽醌(DNPQ)阴极和NH4+电荷载体之间构建超稳定的锁键氢键网络,以实现超稳定的ZOBs。DNPQ具有六活性羰基/硝基基基(h键受体),由于活化能较低(0.32 vs. 0.43 eV), DNPQ易于与四面体NH4+离子(h键供体)氧化还原偶联,而不含惰性Zn2+离子。NH4+配位氢键电化学克服了DNPQ阴极在水溶液中的不稳定性,实现了非金属NH4+电荷载体的快速氧化还原动力学。结果,3e- NH4+与DNPQ阴极的三步配位实现了zob的大电流生存能力(50 a g-1)和持久循环能力(80,000次循环)。这项工作拓宽了开发高性能氢键稳定有机化合物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
A multicolor photochromic gel based on temporal separation of photochemical reactions. Digital shape-morphing thermo-mechanical metamaterials. Electrochemical recovery and regeneration of polyethylene terephthalate materials. Light-permissive piezoelectrics: advances in Pb-based transparent ceramics and crystals for next-generation devices. STING agonist-loaded cationic radioactive microspheres enhance transarterial radioembolization of hepatocellular carcinoma via tumor immune activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1