Significantly enhanced energy harvesting performance in lead-free piezoceramics via a synergistic design strategy.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-02-24 DOI:10.1039/d4mh01902d
Jianxun Zhang, Qianqian Xu, Yan Zhang, Wei Guo, Hanmin Zeng, Yimeng He, Jiatao Wu, Longlong Guo, Kechao Zhou, Dou Zhang
{"title":"Significantly enhanced energy harvesting performance in lead-free piezoceramics <i>via</i> a synergistic design strategy.","authors":"Jianxun Zhang, Qianqian Xu, Yan Zhang, Wei Guo, Hanmin Zeng, Yimeng He, Jiatao Wu, Longlong Guo, Kechao Zhou, Dou Zhang","doi":"10.1039/d4mh01902d","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the Internet of Things, there exists an urgent necessity for high performance piezoelectric energy harvesters to facilitate the construction of more efficient wireless sensor systems. However, the development of piezoelectric energy harvesters with high power density remains a major challenge. In this study, we present a synergistic design strategy aimed at improving the output performance of piezoelectric energy harvesters. Micro-pores with low permittivity were introduced into the ceramics to improve the piezoelectric key parameters, including the piezoelectric voltage coefficient (<i>g</i><sub>33</sub>) and the piezoelectric energy harvesting figure of merit (FoM<sub>33</sub>). The barium titanate (BTO) ceramics with 60% aligned pores obtained high <i>g</i><sub>33</sub> and FoM<sub>33</sub>, which were up to 24.8 × 10<sup>-3</sup> V m N<sup>-1</sup> and 3.3 × 10<sup>-12</sup> m<sup>2</sup> N<sup>-1</sup>. By optimizing the aspect ratio of each ceramic unit, a higher effective stress level dispersed in the ceramic phase was achieved, and the open circuit voltage of the sensor was significantly improved (41.3%). The construction of high-output performance piezoelectric energy harvesters based on BTO ceramics with relatively low piezoelectric coefficients was successfully achieved <i>via</i> this synergistic design strategy. This high-performance energy harvester exhibits excellent open-circuit voltage (354.8 V), short-circuit current (710.1 μA) and power density (16.7 mW cm<sup>-2</sup>), demonstrating the feasibility of this synergistic design strategy in developing high-output energy supply systems. The application of piezoelectric energy harvesters in powering micro-devices and monitoring train stability was demonstrated. This work is expected to provide new opportunities for the fabrication of future self-powered electronic devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01902d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the Internet of Things, there exists an urgent necessity for high performance piezoelectric energy harvesters to facilitate the construction of more efficient wireless sensor systems. However, the development of piezoelectric energy harvesters with high power density remains a major challenge. In this study, we present a synergistic design strategy aimed at improving the output performance of piezoelectric energy harvesters. Micro-pores with low permittivity were introduced into the ceramics to improve the piezoelectric key parameters, including the piezoelectric voltage coefficient (g33) and the piezoelectric energy harvesting figure of merit (FoM33). The barium titanate (BTO) ceramics with 60% aligned pores obtained high g33 and FoM33, which were up to 24.8 × 10-3 V m N-1 and 3.3 × 10-12 m2 N-1. By optimizing the aspect ratio of each ceramic unit, a higher effective stress level dispersed in the ceramic phase was achieved, and the open circuit voltage of the sensor was significantly improved (41.3%). The construction of high-output performance piezoelectric energy harvesters based on BTO ceramics with relatively low piezoelectric coefficients was successfully achieved via this synergistic design strategy. This high-performance energy harvester exhibits excellent open-circuit voltage (354.8 V), short-circuit current (710.1 μA) and power density (16.7 mW cm-2), demonstrating the feasibility of this synergistic design strategy in developing high-output energy supply systems. The application of piezoelectric energy harvesters in powering micro-devices and monitoring train stability was demonstrated. This work is expected to provide new opportunities for the fabrication of future self-powered electronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Neuromorphic devices for electronic skin applications. Optimizing optical anisotropy in low-dimensional structures via intralayer hydrogen bonding modulation and anionic substitution. A linearly programmable strategy for polymer elastomer mechanics. Critical role of pore size on perfluorooctanoic acid adsorption behaviors in carbonaceous sorbents. Advances in small droplets manipulation on bio-inspired slippery surfaces: chances and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1