Network Architecture of Leaf Trait Correlations Has Shifted Following Crop Domestication.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-02-24 DOI:10.1111/pce.15443
Zhangying Lei, Ziliang Li, Ian J Wright, Shubham Chhajed, Wangfeng Zhang, Daohua He, Yali Zhang
{"title":"Network Architecture of Leaf Trait Correlations Has Shifted Following Crop Domestication.","authors":"Zhangying Lei, Ziliang Li, Ian J Wright, Shubham Chhajed, Wangfeng Zhang, Daohua He, Yali Zhang","doi":"10.1111/pce.15443","DOIUrl":null,"url":null,"abstract":"<p><p>Domestication of crops with the goal of improving yield has led to spectacular shifts in phenotypic traits and their correlation patterns. However, it is relatively unknown whether domestication has driven variation in the architecture of trait correlation networks to optimise carbon return on construction cost along the leaf economics spectrum (LES). Here, we compiled a data set of leaf functional, biochemical, and anatomical traits of 54 wild and cultivated crops. We found that crops tended to be located at the acquisitive end of global LES, typically having low leaf mass per area (LMA), high photosynthetic rate per mass, and high leaf nitrogen and phosphorus content per mass. Architectural changes in trait networks (module number, hub traits, and number of correlations) aligned with the notion of a divergent domestication syndrome due to artificial selection for faster growth and higher yield in high-resource agricultural fields. Domestication has increased the carbon return on resource investment via selecting trait combinations including higher photosynthesis, greater leaf area and LMA. We highlight that strategy-shifts towards faster photosynthetic return on investments in leaves have been coordinated with divergent trait correlation, which has important implications for understanding patterns of trait covariation under crop domestication.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15443","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Domestication of crops with the goal of improving yield has led to spectacular shifts in phenotypic traits and their correlation patterns. However, it is relatively unknown whether domestication has driven variation in the architecture of trait correlation networks to optimise carbon return on construction cost along the leaf economics spectrum (LES). Here, we compiled a data set of leaf functional, biochemical, and anatomical traits of 54 wild and cultivated crops. We found that crops tended to be located at the acquisitive end of global LES, typically having low leaf mass per area (LMA), high photosynthetic rate per mass, and high leaf nitrogen and phosphorus content per mass. Architectural changes in trait networks (module number, hub traits, and number of correlations) aligned with the notion of a divergent domestication syndrome due to artificial selection for faster growth and higher yield in high-resource agricultural fields. Domestication has increased the carbon return on resource investment via selecting trait combinations including higher photosynthesis, greater leaf area and LMA. We highlight that strategy-shifts towards faster photosynthetic return on investments in leaves have been coordinated with divergent trait correlation, which has important implications for understanding patterns of trait covariation under crop domestication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作物驯化后叶片性状相关性的网络结构发生了变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Both Jasmonic Acid- and Abscisic Acid-Mediated Signalling Pathways Regulate the Ovicidal Defence of Plants Against Phloem-Feeding Insects. miR3398-VqMYB15 Regulates the Synthesis of Stilbene in Vitis quinquangularis. Network Architecture of Leaf Trait Correlations Has Shifted Following Crop Domestication. SmDREB A1-10 Is Required for SmTTF30-Mediated Hypoxia Stress Tolerance in Salix matsudana. OsMED25-OsWRKY78 Mediated Transcriptional Activation of OsGA20ox1 Positively Regulates Plant Height in Rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1