Protective effects of oral pharmaceutical solution of fucoxanthin against paracetamol-induced liver injury: modulation of drug-metabolizing enzymes, oxidative stress, and apoptotic pathways in rats.
Safaa Y Eid, Maimonah F Koshak, Mohamed E Elzubier, Bassem Refaat, Riyad A Almaimani, Mohammad Althubiti, Essam Eldin M Nour Eldin, Nawaf H Alahmadi, Sameer H Fatani, Akhmed Aslam, Elshiekh Babiker Adam Khidir, Ahmed A H Abdellatif, Mahmoud Zaki El-Readi
{"title":"Protective effects of oral pharmaceutical solution of fucoxanthin against paracetamol-induced liver injury: modulation of drug-metabolizing enzymes, oxidative stress, and apoptotic pathways in rats.","authors":"Safaa Y Eid, Maimonah F Koshak, Mohamed E Elzubier, Bassem Refaat, Riyad A Almaimani, Mohammad Althubiti, Essam Eldin M Nour Eldin, Nawaf H Alahmadi, Sameer H Fatani, Akhmed Aslam, Elshiekh Babiker Adam Khidir, Ahmed A H Abdellatif, Mahmoud Zaki El-Readi","doi":"10.1080/03639045.2025.2469808","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Paracetamol (PAC) overdose causes acute liver injury through oxidative stress, inflammation, and apoptosis. While N-acetyl cysteine (NAC) is the standard treatment, fucoxanthin (FUC), a carotenoid from brown seaweed, has shown hepatoprotective effects in animal studies, but its role in PAC toxicity is unclear.</p><p><strong>Objective: </strong>Compared to NAC, this study assessed the hepatoprotective potential of oral FUC solution toward PAC-induced injury to the rat's liver.</p><p><strong>Method: </strong>FUC was formulated as a pharmaceutical solution and characterized <i>via</i> UV-VIS spectroscopy. Six groups of male Wistar rats each contain five animal which are in total 30 rats: negative control (NC), positive control (PC, 2 g/kg PAC), NAC (1200 mg/kg), and three oral FUC doses (100, 200, and 500 mg/kg) for seven days, with PAC administered on day-8. Liver tissues were analyzed for oxidative stress, gene expression, and histology.</p><p><strong>Results: </strong>FUC solution was clear with absorbance at 433 nm. PAC caused 30% mortality (<i>p</i> < .01 vs. others). NAC reduced ALT (56%), AST (78%), ALP (28%), and increased TP by 25% (<i>p</i> < .001 vs. PC). FUC at 500 mg/kg (F500) was superior, reducing ALT (82%), AST (93%), ALP (40%), and increasing TP (35%) (<i>p</i> < .001 vs. NAC). PAC increased oxidative stress, CYP2E1/CYP3A2 expression, apoptosis markers, and suppressed Nrf2/AMPK/AKT1. F500 improved antioxidants, reduced oxidative stress, and apoptosis, enhanced the Nrf2/AMPK pathway, and downregulated CYP2E1/CYP3A2 (<i>p</i> < .01).</p><p><strong>Conclusion: </strong>FUC, particularly at 500 mg/kg, offers significant hepatoprotection against PAC-induced liver injury by modulating drug metabolizing enzymes and enhancing antioxidant defenses, warranting further research.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-12"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2469808","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Paracetamol (PAC) overdose causes acute liver injury through oxidative stress, inflammation, and apoptosis. While N-acetyl cysteine (NAC) is the standard treatment, fucoxanthin (FUC), a carotenoid from brown seaweed, has shown hepatoprotective effects in animal studies, but its role in PAC toxicity is unclear.
Objective: Compared to NAC, this study assessed the hepatoprotective potential of oral FUC solution toward PAC-induced injury to the rat's liver.
Method: FUC was formulated as a pharmaceutical solution and characterized via UV-VIS spectroscopy. Six groups of male Wistar rats each contain five animal which are in total 30 rats: negative control (NC), positive control (PC, 2 g/kg PAC), NAC (1200 mg/kg), and three oral FUC doses (100, 200, and 500 mg/kg) for seven days, with PAC administered on day-8. Liver tissues were analyzed for oxidative stress, gene expression, and histology.
Results: FUC solution was clear with absorbance at 433 nm. PAC caused 30% mortality (p < .01 vs. others). NAC reduced ALT (56%), AST (78%), ALP (28%), and increased TP by 25% (p < .001 vs. PC). FUC at 500 mg/kg (F500) was superior, reducing ALT (82%), AST (93%), ALP (40%), and increasing TP (35%) (p < .001 vs. NAC). PAC increased oxidative stress, CYP2E1/CYP3A2 expression, apoptosis markers, and suppressed Nrf2/AMPK/AKT1. F500 improved antioxidants, reduced oxidative stress, and apoptosis, enhanced the Nrf2/AMPK pathway, and downregulated CYP2E1/CYP3A2 (p < .01).
Conclusion: FUC, particularly at 500 mg/kg, offers significant hepatoprotection against PAC-induced liver injury by modulating drug metabolizing enzymes and enhancing antioxidant defenses, warranting further research.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.