PnNAC03 from Panax notoginseng functions in positively regulating saponins and lignin biosynthesis during cell wall formation.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2025-02-23 DOI:10.1007/s00299-025-03452-7
Xiaoqin Zhang, Yuying Huang, Yue Shi, Xin Wang, Wenqin Chen, Laha Amu, Baowei Wang, Zhenyu Peng, Xiaohui Wang, Shengli Wei
{"title":"PnNAC03 from Panax notoginseng functions in positively regulating saponins and lignin biosynthesis during cell wall formation.","authors":"Xiaoqin Zhang, Yuying Huang, Yue Shi, Xin Wang, Wenqin Chen, Laha Amu, Baowei Wang, Zhenyu Peng, Xiaohui Wang, Shengli Wei","doi":"10.1007/s00299-025-03452-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>PnNAC03 positively regulates saponin biosynthesis and lignin accumulation during secondary cell wall formation by directly binding to the promoters of key saponin and lignin biosynthetic genes. The NAC transcription factor family plays a crucial role in the regulation of secondary metabolites biosynthesis. Saponins are the major bioactive compounds for Panax notoginseng, which is a world-globally recognized medicinal plant and possesses multiple pharmacological activities. The secondary cell wall is essential for P.notoginseng growth and stress resistance. However, the role of NAC transcription factors in regulating both saponin biosynthesis and secondary cell wall formation remains largely unknown. In this study, we characterized an NAC transcription factor, PnNAC03, which is a nuclear-localized protein and functions as a transcriptional activator. Silencing of PnNAC03 with the RNAi method in P. notoginseng calli resulted in a significant reduction in the content of saponin and the expression of key saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Additionally, PnNAC03 specifically bound to the promoters of these genes, thereby enhancing their expression. Overexpression of PnNAC03 in Arabidopsis thaliana led to the increase of secondary cell wall thickness and lignin content, as well as upregulation of the expression of AtPAL and AtC4H. RNAi-mediated silencing of PnNAC03 in P. notoginseng further confirmed its role in lignin biosynthesis, as lignin content and the expression levels of PnPAL and PnC4H were significantly reduced. Furthermore, PnNAC03 could directly bind to the promoters of PAL and C4H genes in both A. thaliana and P. notoginseng. Collectively, our results highlight the dual regulatory role of PnNAC03 in promoting both saponin biosynthesis and lignin accumulation, providing valuable insights for the molecular breeding of P. notoginseng.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"63"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03452-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: PnNAC03 positively regulates saponin biosynthesis and lignin accumulation during secondary cell wall formation by directly binding to the promoters of key saponin and lignin biosynthetic genes. The NAC transcription factor family plays a crucial role in the regulation of secondary metabolites biosynthesis. Saponins are the major bioactive compounds for Panax notoginseng, which is a world-globally recognized medicinal plant and possesses multiple pharmacological activities. The secondary cell wall is essential for P.notoginseng growth and stress resistance. However, the role of NAC transcription factors in regulating both saponin biosynthesis and secondary cell wall formation remains largely unknown. In this study, we characterized an NAC transcription factor, PnNAC03, which is a nuclear-localized protein and functions as a transcriptional activator. Silencing of PnNAC03 with the RNAi method in P. notoginseng calli resulted in a significant reduction in the content of saponin and the expression of key saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Additionally, PnNAC03 specifically bound to the promoters of these genes, thereby enhancing their expression. Overexpression of PnNAC03 in Arabidopsis thaliana led to the increase of secondary cell wall thickness and lignin content, as well as upregulation of the expression of AtPAL and AtC4H. RNAi-mediated silencing of PnNAC03 in P. notoginseng further confirmed its role in lignin biosynthesis, as lignin content and the expression levels of PnPAL and PnC4H were significantly reduced. Furthermore, PnNAC03 could directly bind to the promoters of PAL and C4H genes in both A. thaliana and P. notoginseng. Collectively, our results highlight the dual regulatory role of PnNAC03 in promoting both saponin biosynthesis and lignin accumulation, providing valuable insights for the molecular breeding of P. notoginseng.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
NIN-like proteins NLP8 negatively regulate drought resistance in Arabidopsis by regulating the expression level of PUB23. Multi-omics analysis of the accumulation mechanism of flavonoids in rice caryopsis under blue light. RsWRKY75 promotes ROS scavenging and cadmium efflux via activating the transcription of RsAPX1 and RsPDR8 in radish (Raphanus sativus L.). PnNAC03 from Panax notoginseng functions in positively regulating saponins and lignin biosynthesis during cell wall formation. CRISPR/Cas9-mediated editing of eukaryotic elongation factor 1B gamma (eEF1Bγ) reduces Tobacco etch virus accumulation in Nicotiana benthamiana.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1