Andrew R Kniss, Andrea De Stefano, Elyssa Arnold, Cameron Douglass, Clayton Myers, Claire Paisley-Jones, Michelle Ranville
{"title":"Honeybee toxicity of pesticides used in United States maize and soybean production, 1998-2020.","authors":"Andrew R Kniss, Andrea De Stefano, Elyssa Arnold, Cameron Douglass, Clayton Myers, Claire Paisley-Jones, Michelle Ranville","doi":"10.1093/inteam/vjaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticides are widely used around the world and have demonstrated benefits to crop production. However, pesticides have also been associated with negative impacts to nontarget organisms, including pollinators. Here, we combined pesticide usage and toxicity data to create a toxicity index, which shows that pesticide hazard to honeybees (Apis mellifera) has changed substantially in U.S. maize (Zea mays) and soybean (Glycine max) production between 1998 and 2020. To reduce potential risks to honeybees and increase the eco-efficiency of crop production, efforts should be made to refine management strategies for pests that contribute most to the honeybee toxicity index. In maize, Coleoptera and Lepidoptera pests drive pesticide usage most responsible for hazard to honeybees, although the relative hazard from targeting those pests has decreased over time. In soybean, hemipteran pests were the largest relative contributor to insecticide honeybee hazard. Specific pests that contributed to honeybee toxicity hazard included corn rootworm species (Diabrotica spp.), silk-eating insects, and cutworms in maize, and stink bugs (family Pentatomidae) and aphid species (Family Aphididae) in soybean. We combined crop yield data with the toxicity index to quantify the eco-efficiency, a measure of crop yield per unit of toxicity hazard. While crop yield for both maize and soybean increased steadily throughout the study period, eco-efficiency decreased in both crops between 2012 and 2020, suggesting increases in crop yield have failed to keep pace with increases in insecticide hazard to honeybees.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf003","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticides are widely used around the world and have demonstrated benefits to crop production. However, pesticides have also been associated with negative impacts to nontarget organisms, including pollinators. Here, we combined pesticide usage and toxicity data to create a toxicity index, which shows that pesticide hazard to honeybees (Apis mellifera) has changed substantially in U.S. maize (Zea mays) and soybean (Glycine max) production between 1998 and 2020. To reduce potential risks to honeybees and increase the eco-efficiency of crop production, efforts should be made to refine management strategies for pests that contribute most to the honeybee toxicity index. In maize, Coleoptera and Lepidoptera pests drive pesticide usage most responsible for hazard to honeybees, although the relative hazard from targeting those pests has decreased over time. In soybean, hemipteran pests were the largest relative contributor to insecticide honeybee hazard. Specific pests that contributed to honeybee toxicity hazard included corn rootworm species (Diabrotica spp.), silk-eating insects, and cutworms in maize, and stink bugs (family Pentatomidae) and aphid species (Family Aphididae) in soybean. We combined crop yield data with the toxicity index to quantify the eco-efficiency, a measure of crop yield per unit of toxicity hazard. While crop yield for both maize and soybean increased steadily throughout the study period, eco-efficiency decreased in both crops between 2012 and 2020, suggesting increases in crop yield have failed to keep pace with increases in insecticide hazard to honeybees.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.