Jean Piero Margaria, Sipontina Faienza, Irene Franco
{"title":"Somatic mutations acquired during life: state of the art and implications for the kidney.","authors":"Jean Piero Margaria, Sipontina Faienza, Irene Franco","doi":"10.1016/j.kint.2024.10.036","DOIUrl":null,"url":null,"abstract":"<p><p>As a consequence of continuous interaction with mutagens, the genome sequence accumulates changes, which are referred to as \"somatic mutations\". Somatic variants acquired by normal cells during a lifetime are difficult to detect with common sequencing methods. This review provides a basic description of currently available technologies for somatic mutation detection and summarizes the studies that have explored somatic mutation in the kidneys. Given the role of somatic mutations in the formation of kidney cysts, genomic analyses can be used to investigate mechanisms that influence disease progression in inherited cystic kidney disorders. Moreover, genomic analyses are an important method to explore the evolution from a normal cell to cancer, providing insights into mechanisms of tumor initiation. Somatic mutation data can be used to discover endogenous and exogenous mutagens that harness the kidneys, including tobacco and aristolochic acid. In addition, genomic analyses have highlighted a link between kidney damage and mutation. This information is going to be key for understanding life-style factors that influence kidney cancer risk, overall impacting clinical decisions and public health strategies.</p>","PeriodicalId":17801,"journal":{"name":"Kidney international","volume":" ","pages":""},"PeriodicalIF":14.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.kint.2024.10.036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a consequence of continuous interaction with mutagens, the genome sequence accumulates changes, which are referred to as "somatic mutations". Somatic variants acquired by normal cells during a lifetime are difficult to detect with common sequencing methods. This review provides a basic description of currently available technologies for somatic mutation detection and summarizes the studies that have explored somatic mutation in the kidneys. Given the role of somatic mutations in the formation of kidney cysts, genomic analyses can be used to investigate mechanisms that influence disease progression in inherited cystic kidney disorders. Moreover, genomic analyses are an important method to explore the evolution from a normal cell to cancer, providing insights into mechanisms of tumor initiation. Somatic mutation data can be used to discover endogenous and exogenous mutagens that harness the kidneys, including tobacco and aristolochic acid. In addition, genomic analyses have highlighted a link between kidney damage and mutation. This information is going to be key for understanding life-style factors that influence kidney cancer risk, overall impacting clinical decisions and public health strategies.
期刊介绍:
Kidney International (KI), the official journal of the International Society of Nephrology, is led by Dr. Pierre Ronco (Paris, France) and stands as one of nephrology's most cited and esteemed publications worldwide.
KI provides exceptional benefits for both readers and authors, featuring highly cited original articles, focused reviews, cutting-edge imaging techniques, and lively discussions on controversial topics.
The journal is dedicated to kidney research, serving researchers, clinical investigators, and practicing nephrologists.