{"title":"Cellulose as Source and Matrix for Fluorescent Chemo-Sensors.","authors":"Sicily Rilu Joseph, Jith C Janardhanan, Sithara Radhakrishnan, Honey John, Ushamani Mythili","doi":"10.1007/s10895-025-04200-6","DOIUrl":null,"url":null,"abstract":"<p><p>The review explores the pivotal role of cellulose in enhancing the sensing capabilities of fluorescent chemo-sensors, particularly carbon dots (CDs) and delineates cellulose's multifaceted contributions as both a precursor and stabilizing matrix, highlighting its structural adaptability across varied forms-hydrogels, aerogels, films-to bolster the stability, sensitivity, and selectivity of these sensors. Cellulose's structural versatility enables advanced functionalization, fostering a robust platform that amplifies the stability and functional efficiency of CDs across diverse sensing paradigms. The investigation encompasses utilization of cellulose as precursor for CDs, cellulose nanocrystals and matrix for the integration of CDs, elucidating their collective impact on advancing fluorescence-based detection technologies.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04200-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The review explores the pivotal role of cellulose in enhancing the sensing capabilities of fluorescent chemo-sensors, particularly carbon dots (CDs) and delineates cellulose's multifaceted contributions as both a precursor and stabilizing matrix, highlighting its structural adaptability across varied forms-hydrogels, aerogels, films-to bolster the stability, sensitivity, and selectivity of these sensors. Cellulose's structural versatility enables advanced functionalization, fostering a robust platform that amplifies the stability and functional efficiency of CDs across diverse sensing paradigms. The investigation encompasses utilization of cellulose as precursor for CDs, cellulose nanocrystals and matrix for the integration of CDs, elucidating their collective impact on advancing fluorescence-based detection technologies.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.