Ionic Covalent Organic Networks Confined in Molecularly Imprinted Polymers for Optosensing of Histamine in Fish Products.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2025-02-24 DOI:10.1007/s10895-025-04205-1
Dianwei Zhang, Yuanchen Ma, Shengnan Wang, Ping Xiao, Shiza Nawaz, Fenghuan Wang, Huilin Liu
{"title":"Ionic Covalent Organic Networks Confined in Molecularly Imprinted Polymers for Optosensing of Histamine in Fish Products.","authors":"Dianwei Zhang, Yuanchen Ma, Shengnan Wang, Ping Xiao, Shiza Nawaz, Fenghuan Wang, Huilin Liu","doi":"10.1007/s10895-025-04205-1","DOIUrl":null,"url":null,"abstract":"<p><p>Histamine is a naturally occurring alkaloid that is an important indicator of meat spoilage, and excessive levels in food can lead to food poisoning or trigger allergic reactions. Therefore, accurate detection of histamine in meat is crucial for evaluating freshness and ensuring meat quality. In this study, a fluorescence probe based on ionic covalent organic networks confined with molecularly imprinted polymers (iCON@MIPs) was developed for detecting histamine in aquatic products. The probe was utilized iCOFs as the light-emitting element to improve the selectivity of the system for histamine by ion attraction reaction, and its anti-interference ability enhanced through molecular imprinting technology. The maximum emission wavelength of iCON@MIPs was at 570 nm, giving it a bright yellow emission and endowing it with the ability for on-site detection. The detection limit of iCON@MIPs for histamine was 0.516 µg L<sup>- 1</sup>, with a good recovery rate of 87.29-102.26% in fish samples. The fluorescence probe developed in this study provides an effective and rapid detection method for harmful substances in food, agriculture, environment and even medicine.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04205-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Histamine is a naturally occurring alkaloid that is an important indicator of meat spoilage, and excessive levels in food can lead to food poisoning or trigger allergic reactions. Therefore, accurate detection of histamine in meat is crucial for evaluating freshness and ensuring meat quality. In this study, a fluorescence probe based on ionic covalent organic networks confined with molecularly imprinted polymers (iCON@MIPs) was developed for detecting histamine in aquatic products. The probe was utilized iCOFs as the light-emitting element to improve the selectivity of the system for histamine by ion attraction reaction, and its anti-interference ability enhanced through molecular imprinting technology. The maximum emission wavelength of iCON@MIPs was at 570 nm, giving it a bright yellow emission and endowing it with the ability for on-site detection. The detection limit of iCON@MIPs for histamine was 0.516 µg L- 1, with a good recovery rate of 87.29-102.26% in fish samples. The fluorescence probe developed in this study provides an effective and rapid detection method for harmful substances in food, agriculture, environment and even medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Development of RhB@CdMOF-based Fluorescent Sensor Array for Discrimination of BTEX. Engineering High-Performance Carbazole-Based Co-Sensitizers: Synthesis, Photophysical Characterization, and Synergistic Enhancement in Dye-Sensitized Solar Cells. Synthesis of Dual-Responsive, Highly Fluorescent, Non-Conjugated Polymer Dots for Fe3+ Detection. Synthesis of Novel Phenanthroimidazole Based Beta-Diketone Compounds: Investigation of Their Spectroscopic Properties and Electrochemical Characterization. Photocatalytic Degradation of Brilliant Blue Dye Under Solar Light Irradiation: An Insight Into Mechanistic, Kinetics, Mineralization and Scavenging Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1