Novel Silicon-Based Fluorescent Nanocomposite Drug Carriers for Natural Compound Delivery in Melanoma Treatment.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2025-02-24 DOI:10.1007/s10895-025-04182-5
Fei Gao, Lei Li, Linbo Liu, Guangshuai Li, Jianan Zhang, Wang Zhan, Wenjian You, Xia Lin, Yun Liu, Jiayao Wang, Denglin Chen
{"title":"Novel Silicon-Based Fluorescent Nanocomposite Drug Carriers for Natural Compound Delivery in Melanoma Treatment.","authors":"Fei Gao, Lei Li, Linbo Liu, Guangshuai Li, Jianan Zhang, Wang Zhan, Wenjian You, Xia Lin, Yun Liu, Jiayao Wang, Denglin Chen","doi":"10.1007/s10895-025-04182-5","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma, a highly aggressive cancer, is closely associated with an elevated tumor mutation burden (TMB) and an active tumor microenvironment (TME). Melanin synthesis, a key feature of melanoma progression, is primarily regulated by tyrosinase (TYR), the rate-limiting enzyme controlled by the microphthalmia-associated transcription factor (MITF). Resveratrol (Res), a natural polyphenol known for its antioxidant and anticancer properties, faces limitations including poor solubility, low bioavailability, and rapid metabolism. To overcome these challenges, a three-dimensional Co(II) coordination polymer {[Co(bpdado)(bpe)(H₂O)₂]·2DMF·2 H₂O}n (1) was synthesized and incorporated into a composite material, 1@CP1, for Res delivery (1@CP1@Res). The system exhibited enhanced solubility, pH-sensitive release, and improved biological activity. Fluorescence assays demonstrated significant quenching in the presence of Cu²⁺ ions, indicating a high sensitivity of 1@CP1@Res to metal ion interactions. The pH-responsive drug release profile was confirmed by in vitro studies showing accelerated release at lower pH values, mimicking the acidic tumor microenvironment. Cell viability assays revealed that 1@CP1@Res significantly inhibited the proliferation of murine B16-F10 melanoma cells, with cell survival rates of 72.4%, 58.2%, and 43.6% at 24, 48, and 72 h of incubation, respectively, at a concentration of 100 µM. Molecular docking studies further revealed multiple binding interactions between Res and the coordination polymer, suggesting a promising therapeutic strategy for melanoma treatment by integrating advanced materials with bioactive compounds.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04182-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma, a highly aggressive cancer, is closely associated with an elevated tumor mutation burden (TMB) and an active tumor microenvironment (TME). Melanin synthesis, a key feature of melanoma progression, is primarily regulated by tyrosinase (TYR), the rate-limiting enzyme controlled by the microphthalmia-associated transcription factor (MITF). Resveratrol (Res), a natural polyphenol known for its antioxidant and anticancer properties, faces limitations including poor solubility, low bioavailability, and rapid metabolism. To overcome these challenges, a three-dimensional Co(II) coordination polymer {[Co(bpdado)(bpe)(H₂O)₂]·2DMF·2 H₂O}n (1) was synthesized and incorporated into a composite material, 1@CP1, for Res delivery (1@CP1@Res). The system exhibited enhanced solubility, pH-sensitive release, and improved biological activity. Fluorescence assays demonstrated significant quenching in the presence of Cu²⁺ ions, indicating a high sensitivity of 1@CP1@Res to metal ion interactions. The pH-responsive drug release profile was confirmed by in vitro studies showing accelerated release at lower pH values, mimicking the acidic tumor microenvironment. Cell viability assays revealed that 1@CP1@Res significantly inhibited the proliferation of murine B16-F10 melanoma cells, with cell survival rates of 72.4%, 58.2%, and 43.6% at 24, 48, and 72 h of incubation, respectively, at a concentration of 100 µM. Molecular docking studies further revealed multiple binding interactions between Res and the coordination polymer, suggesting a promising therapeutic strategy for melanoma treatment by integrating advanced materials with bioactive compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Development of RhB@CdMOF-based Fluorescent Sensor Array for Discrimination of BTEX. Engineering High-Performance Carbazole-Based Co-Sensitizers: Synthesis, Photophysical Characterization, and Synergistic Enhancement in Dye-Sensitized Solar Cells. Synthesis of Dual-Responsive, Highly Fluorescent, Non-Conjugated Polymer Dots for Fe3+ Detection. Synthesis of Novel Phenanthroimidazole Based Beta-Diketone Compounds: Investigation of Their Spectroscopic Properties and Electrochemical Characterization. Photocatalytic Degradation of Brilliant Blue Dye Under Solar Light Irradiation: An Insight Into Mechanistic, Kinetics, Mineralization and Scavenging Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1