{"title":"Nicotiana benthamiana VASCULAR-RELATED NAC-DOMAIN7-2 (NbVND7-2) has a role in xylem formation during interfamily grafting.","authors":"Chaokun Huang, Koichi Toyokura, Ei-Ichi Murakami, Aiko Ishiwata, Ken-Ichi Kurotani, Michitaka Notaguchi","doi":"10.1093/jxb/eraf074","DOIUrl":null,"url":null,"abstract":"<p><p>VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a transcription factor gene that plays a critical role in xylem differentiation. The ectopic expression of VND7 induces the formation of secondary cell walls with spiral patterns in multiple plant cell types. In the present study, we have identified four homologs of VND7 in Nicotiana benthamiana and assigned them the names NbVND7-1 to NbVND7-4. Particularly, NbVND7-1 and NbVND7-2 were highly expressed during N. benthamiana and Arabidopsis thaliana (Nb/At) interfamily grafting. Analysis of the promoter GUS reporter lines of NbVND7 genes elucidated the expression of NbVND7-1 and NbVND7-2 in xylem tissues of intact and grafted plants, and those of NbVND7-3 and NbVND7-4 in internal phloem tissues. Gene network analysis revealed the downstream genes of each NbVND7 homolog and highlighted the association of NbVND7-1 and NbVND7-2 with xylem formation. A 𝛽-estradiol-inducible system for NbVND7-2 demonstrated that NbVND7-2 promotes ectopic xylem vessel differentiation in N. benthamiana seedlings and in the stem tissues at graft junction. Induction of NbVND7-2 at graft junction enhanced ectopic xylem formation in the callus tissues proliferated at graft boundary, accelerated the initiation of water transport from stock to scion, and enhanced scion stem growth after grafting. This study revealed a role of NbVND7 genes in xylem formation that can enhance Nicotiana interfamily grafting.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf074","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
VASCULAR-RELATED NAC-DOMAIN7 (VND7) is a transcription factor gene that plays a critical role in xylem differentiation. The ectopic expression of VND7 induces the formation of secondary cell walls with spiral patterns in multiple plant cell types. In the present study, we have identified four homologs of VND7 in Nicotiana benthamiana and assigned them the names NbVND7-1 to NbVND7-4. Particularly, NbVND7-1 and NbVND7-2 were highly expressed during N. benthamiana and Arabidopsis thaliana (Nb/At) interfamily grafting. Analysis of the promoter GUS reporter lines of NbVND7 genes elucidated the expression of NbVND7-1 and NbVND7-2 in xylem tissues of intact and grafted plants, and those of NbVND7-3 and NbVND7-4 in internal phloem tissues. Gene network analysis revealed the downstream genes of each NbVND7 homolog and highlighted the association of NbVND7-1 and NbVND7-2 with xylem formation. A 𝛽-estradiol-inducible system for NbVND7-2 demonstrated that NbVND7-2 promotes ectopic xylem vessel differentiation in N. benthamiana seedlings and in the stem tissues at graft junction. Induction of NbVND7-2 at graft junction enhanced ectopic xylem formation in the callus tissues proliferated at graft boundary, accelerated the initiation of water transport from stock to scion, and enhanced scion stem growth after grafting. This study revealed a role of NbVND7 genes in xylem formation that can enhance Nicotiana interfamily grafting.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.