Pedro Diniz, Bernd Grimm, Frederic Garcia, Jennifer Fayad, Christophe Ley, Caroline Mouton, Jacob F Oeding, Michael T Hirschmann, Kristian Samuelsson, Romain Seil
{"title":"Digital twin systems for musculoskeletal applications: A current concepts review.","authors":"Pedro Diniz, Bernd Grimm, Frederic Garcia, Jennifer Fayad, Christophe Ley, Caroline Mouton, Jacob F Oeding, Michael T Hirschmann, Kristian Samuelsson, Romain Seil","doi":"10.1002/ksa.12627","DOIUrl":null,"url":null,"abstract":"<p><p>Digital twin (DT) systems, which involve creating virtual replicas of physical objects or systems, have the potential to transform healthcare by offering personalised and predictive models that grant deeper insight into a patient's condition. This review explores current concepts in DT systems for musculoskeletal (MSK) applications through an overview of the key components, technologies, clinical uses, challenges, and future directions that define this rapidly growing field. DT systems leverage computational models such as multibody dynamics and finite element analysis to simulate the mechanical behaviour of MSK structures, while integration with wearable technologies allows real-time monitoring and feedback, facilitating preventive measures, and adaptive care strategies. Early applications of DT systems to MSK include optimising the monitoring of exercise and rehabilitation, analysing joint mechanics for personalised surgical techniques, and predicting post-operative outcomes. While still under development, these advancements promise to revolutionise MSK care by improving surgical planning, reducing complications, and personalising patient rehabilitation strategies. Integrating advanced machine learning algorithms can enhance the predictive abilities of DTs and provide a better understanding of disease processes through explainable artificial intelligence (AI). Despite their potential, DT systems face significant challenges. These include integrating multi-modal data, modelling ageing and damage, efficiently using computational resources and developing clinically accurate and impactful models. Addressing these challenges will require multidisciplinary collaboration. Furthermore, guaranteeing patient privacy and protection against bias is extremely important, as is navigating regulatory requirements for clinical adoption. DT systems present a significant opportunity to improve patient care, made possible by recent technological advancements in several fields, including wearable sensors, computational modelling of biological structures, and AI. As these technologies continue to mature and their integration is streamlined, DT systems may fast-track medical innovation, ushering in a new era of rapid improvement of treatment outcomes and broadening the scope of preventive medicine. Level of Evidence: Level V.</p>","PeriodicalId":17880,"journal":{"name":"Knee Surgery, Sports Traumatology, Arthroscopy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee Surgery, Sports Traumatology, Arthroscopy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12627","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital twin (DT) systems, which involve creating virtual replicas of physical objects or systems, have the potential to transform healthcare by offering personalised and predictive models that grant deeper insight into a patient's condition. This review explores current concepts in DT systems for musculoskeletal (MSK) applications through an overview of the key components, technologies, clinical uses, challenges, and future directions that define this rapidly growing field. DT systems leverage computational models such as multibody dynamics and finite element analysis to simulate the mechanical behaviour of MSK structures, while integration with wearable technologies allows real-time monitoring and feedback, facilitating preventive measures, and adaptive care strategies. Early applications of DT systems to MSK include optimising the monitoring of exercise and rehabilitation, analysing joint mechanics for personalised surgical techniques, and predicting post-operative outcomes. While still under development, these advancements promise to revolutionise MSK care by improving surgical planning, reducing complications, and personalising patient rehabilitation strategies. Integrating advanced machine learning algorithms can enhance the predictive abilities of DTs and provide a better understanding of disease processes through explainable artificial intelligence (AI). Despite their potential, DT systems face significant challenges. These include integrating multi-modal data, modelling ageing and damage, efficiently using computational resources and developing clinically accurate and impactful models. Addressing these challenges will require multidisciplinary collaboration. Furthermore, guaranteeing patient privacy and protection against bias is extremely important, as is navigating regulatory requirements for clinical adoption. DT systems present a significant opportunity to improve patient care, made possible by recent technological advancements in several fields, including wearable sensors, computational modelling of biological structures, and AI. As these technologies continue to mature and their integration is streamlined, DT systems may fast-track medical innovation, ushering in a new era of rapid improvement of treatment outcomes and broadening the scope of preventive medicine. Level of Evidence: Level V.
期刊介绍:
Few other areas of orthopedic surgery and traumatology have undergone such a dramatic evolution in the last 10 years as knee surgery, arthroscopy and sports traumatology. Ranked among the top 33% of journals in both Orthopedics and Sports Sciences, the goal of this European journal is to publish papers about innovative knee surgery, sports trauma surgery and arthroscopy. Each issue features a series of peer-reviewed articles that deal with diagnosis and management and with basic research. Each issue also contains at least one review article about an important clinical problem. Case presentations or short notes about technical innovations are also accepted for publication.
The articles cover all aspects of knee surgery and all types of sports trauma; in addition, epidemiology, diagnosis, treatment and prevention, and all types of arthroscopy (not only the knee but also the shoulder, elbow, wrist, hip, ankle, etc.) are addressed. Articles on new diagnostic techniques such as MRI and ultrasound and high-quality articles about the biomechanics of joints, muscles and tendons are included. Although this is largely a clinical journal, it is also open to basic research with clinical relevance.
Because the journal is supported by a distinguished European Editorial Board, assisted by an international Advisory Board, you can be assured that the journal maintains the highest standards.
Official Clinical Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA).