Digital twin systems for musculoskeletal applications: A current concepts review.

IF 3.3 2区 医学 Q1 ORTHOPEDICS Knee Surgery, Sports Traumatology, Arthroscopy Pub Date : 2025-02-24 DOI:10.1002/ksa.12627
Pedro Diniz, Bernd Grimm, Frederic Garcia, Jennifer Fayad, Christophe Ley, Caroline Mouton, Jacob F Oeding, Michael T Hirschmann, Kristian Samuelsson, Romain Seil
{"title":"Digital twin systems for musculoskeletal applications: A current concepts review.","authors":"Pedro Diniz, Bernd Grimm, Frederic Garcia, Jennifer Fayad, Christophe Ley, Caroline Mouton, Jacob F Oeding, Michael T Hirschmann, Kristian Samuelsson, Romain Seil","doi":"10.1002/ksa.12627","DOIUrl":null,"url":null,"abstract":"<p><p>Digital twin (DT) systems, which involve creating virtual replicas of physical objects or systems, have the potential to transform healthcare by offering personalised and predictive models that grant deeper insight into a patient's condition. This review explores current concepts in DT systems for musculoskeletal (MSK) applications through an overview of the key components, technologies, clinical uses, challenges, and future directions that define this rapidly growing field. DT systems leverage computational models such as multibody dynamics and finite element analysis to simulate the mechanical behaviour of MSK structures, while integration with wearable technologies allows real-time monitoring and feedback, facilitating preventive measures, and adaptive care strategies. Early applications of DT systems to MSK include optimising the monitoring of exercise and rehabilitation, analysing joint mechanics for personalised surgical techniques, and predicting post-operative outcomes. While still under development, these advancements promise to revolutionise MSK care by improving surgical planning, reducing complications, and personalising patient rehabilitation strategies. Integrating advanced machine learning algorithms can enhance the predictive abilities of DTs and provide a better understanding of disease processes through explainable artificial intelligence (AI). Despite their potential, DT systems face significant challenges. These include integrating multi-modal data, modelling ageing and damage, efficiently using computational resources and developing clinically accurate and impactful models. Addressing these challenges will require multidisciplinary collaboration. Furthermore, guaranteeing patient privacy and protection against bias is extremely important, as is navigating regulatory requirements for clinical adoption. DT systems present a significant opportunity to improve patient care, made possible by recent technological advancements in several fields, including wearable sensors, computational modelling of biological structures, and AI. As these technologies continue to mature and their integration is streamlined, DT systems may fast-track medical innovation, ushering in a new era of rapid improvement of treatment outcomes and broadening the scope of preventive medicine. Level of Evidence: Level V.</p>","PeriodicalId":17880,"journal":{"name":"Knee Surgery, Sports Traumatology, Arthroscopy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee Surgery, Sports Traumatology, Arthroscopy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12627","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Digital twin (DT) systems, which involve creating virtual replicas of physical objects or systems, have the potential to transform healthcare by offering personalised and predictive models that grant deeper insight into a patient's condition. This review explores current concepts in DT systems for musculoskeletal (MSK) applications through an overview of the key components, technologies, clinical uses, challenges, and future directions that define this rapidly growing field. DT systems leverage computational models such as multibody dynamics and finite element analysis to simulate the mechanical behaviour of MSK structures, while integration with wearable technologies allows real-time monitoring and feedback, facilitating preventive measures, and adaptive care strategies. Early applications of DT systems to MSK include optimising the monitoring of exercise and rehabilitation, analysing joint mechanics for personalised surgical techniques, and predicting post-operative outcomes. While still under development, these advancements promise to revolutionise MSK care by improving surgical planning, reducing complications, and personalising patient rehabilitation strategies. Integrating advanced machine learning algorithms can enhance the predictive abilities of DTs and provide a better understanding of disease processes through explainable artificial intelligence (AI). Despite their potential, DT systems face significant challenges. These include integrating multi-modal data, modelling ageing and damage, efficiently using computational resources and developing clinically accurate and impactful models. Addressing these challenges will require multidisciplinary collaboration. Furthermore, guaranteeing patient privacy and protection against bias is extremely important, as is navigating regulatory requirements for clinical adoption. DT systems present a significant opportunity to improve patient care, made possible by recent technological advancements in several fields, including wearable sensors, computational modelling of biological structures, and AI. As these technologies continue to mature and their integration is streamlined, DT systems may fast-track medical innovation, ushering in a new era of rapid improvement of treatment outcomes and broadening the scope of preventive medicine. Level of Evidence: Level V.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
18.40%
发文量
418
审稿时长
2 months
期刊介绍: Few other areas of orthopedic surgery and traumatology have undergone such a dramatic evolution in the last 10 years as knee surgery, arthroscopy and sports traumatology. Ranked among the top 33% of journals in both Orthopedics and Sports Sciences, the goal of this European journal is to publish papers about innovative knee surgery, sports trauma surgery and arthroscopy. Each issue features a series of peer-reviewed articles that deal with diagnosis and management and with basic research. Each issue also contains at least one review article about an important clinical problem. Case presentations or short notes about technical innovations are also accepted for publication. The articles cover all aspects of knee surgery and all types of sports trauma; in addition, epidemiology, diagnosis, treatment and prevention, and all types of arthroscopy (not only the knee but also the shoulder, elbow, wrist, hip, ankle, etc.) are addressed. Articles on new diagnostic techniques such as MRI and ultrasound and high-quality articles about the biomechanics of joints, muscles and tendons are included. Although this is largely a clinical journal, it is also open to basic research with clinical relevance. Because the journal is supported by a distinguished European Editorial Board, assisted by an international Advisory Board, you can be assured that the journal maintains the highest standards. Official Clinical Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA).
期刊最新文献
Issue Information Digital twin systems for musculoskeletal applications: A current concepts review. Landmarks to guide femoral insertion in lateral patellofemoral ligament reconstruction: An in vivo assessment of isometry. Deep medial collateral ligament plays a stabilising role under degenerative medial meniscus root tears. Kinematic analysis of the sternoclavicular, acromioclavicular and scapulothoracic joint demonstrates significant multiplanar alterations in acromioclavicular injuries with each consecutive ligamentous injury during movements of the shoulder girdle: A whole-cadaver study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1