Mesenchymal stem cell-derived small extracellular vesicles as a delivery vehicle of oncolytic reovirus

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2025-02-21 DOI:10.1016/j.lfs.2025.123489
Konomu Uno , Eiji Kubota , Yoshinori Mori , Ruriko Nishigaki , Yuki Kojima , Takuya Kanno , Makiko Sasaki , Shigeki Fukusada , Naomi Sugimura , Mamoru Tanaka , Keiji Ozeki , Takaya Shimura , Randal N. Johnston , Hiromi Kataoka
{"title":"Mesenchymal stem cell-derived small extracellular vesicles as a delivery vehicle of oncolytic reovirus","authors":"Konomu Uno ,&nbsp;Eiji Kubota ,&nbsp;Yoshinori Mori ,&nbsp;Ruriko Nishigaki ,&nbsp;Yuki Kojima ,&nbsp;Takuya Kanno ,&nbsp;Makiko Sasaki ,&nbsp;Shigeki Fukusada ,&nbsp;Naomi Sugimura ,&nbsp;Mamoru Tanaka ,&nbsp;Keiji Ozeki ,&nbsp;Takaya Shimura ,&nbsp;Randal N. Johnston ,&nbsp;Hiromi Kataoka","doi":"10.1016/j.lfs.2025.123489","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><div>The oncolytic reovirus has demonstrated efficacy against various cancer types in preclinical and clinical studies. However, its anti-tumor activity is limited. This study aimed to develop a novel drug delivery system (DDS) using small extracellular vesicles (sEVs) derived from human adipose-derived mesenchymal stem cells to enhance the therapeutic potential of reovirus.</div></div><div><h3>Materials and methods</h3><div>sEVs, which offer distinct advantages over traditional systems such as nanoparticles due to their natural biocompatibility, low immunogenicity, ability to cross biological barriers, and cell-derived targeting properties, were engineered to encapsulate reovirus particles (sEVs-reo). The anti-tumor activity of sEVs-reo was evaluated using colorectal cancer cell lines HCT116 and SW480. Additionally, resistance to neutralizing antibodies, internalization by cancer cells, and efficacy against junctional adhesion molecule-A(JAM-A)-knockout colon cancer cells resistant to reovirus, generated via CRISPR/Cas9, were assessed.</div></div><div><h3>Key findings</h3><div>sEVs-reo encapsulated reovirus particles effectively, and at a concentration of 0.5 μg/ml, reduced viable tumor cells by 60.3 % in HCT116 and 42.5 % in SW480. Remarkably, sEVs-reo exhibited significant efficacy even in the presence of neutralizing antibodies, including anti-σ1 antibodies and serum from reovirus-infected mice. sEVs-reo were rapidly internalized by cancer cells within 4 h while exhibiting reduced immunogenicity relative to reovirus, and demonstrated significant anti-tumor activity against JAM-A-deficient colon cancer cells.</div></div><div><h3>Significance</h3><div>This study demonstrates that sEVs-reo can address key challenges associated with oncolytic virotherapy. These findings support potential of sEVs as a novel and effective DDS for reovirus in colon cancer treatment, while offering a versatile platform to enhance the efficacy of other oncolytic viruses.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"368 ","pages":"Article 123489"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525001225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

The oncolytic reovirus has demonstrated efficacy against various cancer types in preclinical and clinical studies. However, its anti-tumor activity is limited. This study aimed to develop a novel drug delivery system (DDS) using small extracellular vesicles (sEVs) derived from human adipose-derived mesenchymal stem cells to enhance the therapeutic potential of reovirus.

Materials and methods

sEVs, which offer distinct advantages over traditional systems such as nanoparticles due to their natural biocompatibility, low immunogenicity, ability to cross biological barriers, and cell-derived targeting properties, were engineered to encapsulate reovirus particles (sEVs-reo). The anti-tumor activity of sEVs-reo was evaluated using colorectal cancer cell lines HCT116 and SW480. Additionally, resistance to neutralizing antibodies, internalization by cancer cells, and efficacy against junctional adhesion molecule-A(JAM-A)-knockout colon cancer cells resistant to reovirus, generated via CRISPR/Cas9, were assessed.

Key findings

sEVs-reo encapsulated reovirus particles effectively, and at a concentration of 0.5 μg/ml, reduced viable tumor cells by 60.3 % in HCT116 and 42.5 % in SW480. Remarkably, sEVs-reo exhibited significant efficacy even in the presence of neutralizing antibodies, including anti-σ1 antibodies and serum from reovirus-infected mice. sEVs-reo were rapidly internalized by cancer cells within 4 h while exhibiting reduced immunogenicity relative to reovirus, and demonstrated significant anti-tumor activity against JAM-A-deficient colon cancer cells.

Significance

This study demonstrates that sEVs-reo can address key challenges associated with oncolytic virotherapy. These findings support potential of sEVs as a novel and effective DDS for reovirus in colon cancer treatment, while offering a versatile platform to enhance the efficacy of other oncolytic viruses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
SIRT2 alleviates pre-eclampsia via prompting mitochondrial biogenesis and function. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update Edaravone targets PDGFRβ to attenuate VSMC phenotypic transition. MMP3 as a new target of Danshensu/tetramethylpyrazine derivative for attenuating cardiac fibrosis post-myocardial infarction. Nanocellulose dysregulated glucose homeostasis in female mice on a Western diet: The role of gut microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1