The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC.

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Carcinogenesis Pub Date : 2025-02-24 DOI:10.1002/mc.23898
Xin Li, Mengmeng Wu, Guijuan Chen, Wenliang Ma, Yi Chen, Yibing Ding, Ping Dong, Weidong Ding, Luqing Zhang, Lei Yang, Weidong Gan, Dongmei Li
{"title":"The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC.","authors":"Xin Li, Mengmeng Wu, Guijuan Chen, Wenliang Ma, Yi Chen, Yibing Ding, Ping Dong, Weidong Ding, Luqing Zhang, Lei Yang, Weidong Gan, Dongmei Li","doi":"10.1002/mc.23898","DOIUrl":null,"url":null,"abstract":"<p><p>The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line. It was found that the expression of HADHB in ccRCC tumor tissues was lower than that in paracancer tissues, which is associated with poor patient prognosis. Subsequently, we confirmed that highly invasive ccRCC exhibited an increased lipid accumulation due to the suppression of mitochondrial fatty acid transport and enhanced conversion of fatty acids to triglycerides within cancer cells. Specifically, the downregulation of HADHB inhibited mitochondrial fatty acid β-oxidation (FAO) in cancer cells, leading to partial impairment of mitochondrial function and decreased ATP production. However, this trade-off involving the reduction of a high-yield ATP production conferred an advantage by reducing reactive oxygen species (ROS) generation within cancer cells, thereby protecting them from oxidative stress and enhancing their invasive potential. Furthermore, the downregulation of HADHB promoted epithelial-mesenchymal transition (EMT) and angiogenesis in cancer cells, accelerating the progression of ccRCC and endowing ccRCC cells with metastatic capabilities.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23898","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line. It was found that the expression of HADHB in ccRCC tumor tissues was lower than that in paracancer tissues, which is associated with poor patient prognosis. Subsequently, we confirmed that highly invasive ccRCC exhibited an increased lipid accumulation due to the suppression of mitochondrial fatty acid transport and enhanced conversion of fatty acids to triglycerides within cancer cells. Specifically, the downregulation of HADHB inhibited mitochondrial fatty acid β-oxidation (FAO) in cancer cells, leading to partial impairment of mitochondrial function and decreased ATP production. However, this trade-off involving the reduction of a high-yield ATP production conferred an advantage by reducing reactive oxygen species (ROS) generation within cancer cells, thereby protecting them from oxidative stress and enhancing their invasive potential. Furthermore, the downregulation of HADHB promoted epithelial-mesenchymal transition (EMT) and angiogenesis in cancer cells, accelerating the progression of ccRCC and endowing ccRCC cells with metastatic capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
期刊最新文献
Potential Crosstalk Between ANXA1+ Epithelial Cells and FABP4+ TAM Cells of Ferroptosis-Related Molecular Clusters Promotes an Immunosuppressive Microenvironment in Non-Small Cell Lung Cancer. Integrative Bioinformatics Analysis and Experimental Study of NLRP12 Reveal Its Prognostic Value and Potential Functions in Ovarian Cancer. RNA Methyltransferase NSUN5 Promotes Esophageal Cancer via 5-Methylcytosine Modification of METTL1. FOXN3 Downregulation in Colorectal Cancer Enhances Tumor Cell Stemness by Promoting EP300-Mediated Epigenetic Upregulation of SOX12. Epigenetic Suppression of miR-137 Induces RNF4 Expression, Facilitating Wnt Signaling in Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1