Modulatory effects of Lycium barbarum polysaccharide on bone cell dynamics in osteoporosis.

IF 1.7 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Open Medicine Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.1515/med-2024-1104
Qing Wang, Ting Zhang, Xinting Feng, Peng Chen, Ye Feng, Haoqiang Huang, Yinhua Qian, Yang Guo, Zifei Yin
{"title":"Modulatory effects of <i>Lycium barbarum</i> polysaccharide on bone cell dynamics in osteoporosis.","authors":"Qing Wang, Ting Zhang, Xinting Feng, Peng Chen, Ye Feng, Haoqiang Huang, Yinhua Qian, Yang Guo, Zifei Yin","doi":"10.1515/med-2024-1104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis (OP) is a systemic bone disorder marked by reduced bone mass and disrupted microstructure, leading to higher fracture risk. Epidemiological data from China show a 20.7% prevalence in women and 14.4% in men over 50, underscoring a pressing health issue given the aging population. More drugs to inhibit OP progression should be explored, and their biological mechanisms confirmed in preclinical studies.</p><p><strong>Methods: </strong>In this study, we utilized <i>Lycium barbarum</i> polysaccharide (LBP), an extract from the traditional Chinese medicine Goji Berry. LBP, known for its range of pharmacological activities, was assessed for its potential therapeutic effects on OP. We specifically investigated its influence on the proliferation, apoptosis, migration, and functional differentiation of osteoblasts and osteoclasts.</p><p><strong>Results: </strong>LBP significantly promotes osteoblast proliferation, migration, and osteogenic differentiation. Conversely, it inhibits the intrinsic apoptotic response in osteoblasts. For osteoclasts, LBP suppressed their proliferation, migration, and osteoclastic differentiation while enhancing their natural apoptosis. These results were confirmed by classical protein pathway detection experiments.</p><p><strong>Conclusion: </strong>LBP showcases potential therapeutic properties against OP, particularly in modulating osteoblast/osteoclast activities. While its exact mechanisms through vital signaling pathways remain to be fully elucidated, LBP's prominent effects suggest that it is a promising agent for OP intervention, warranting further in-depth studies.</p>","PeriodicalId":19715,"journal":{"name":"Open Medicine","volume":"20 1","pages":"20241104"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/med-2024-1104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoporosis (OP) is a systemic bone disorder marked by reduced bone mass and disrupted microstructure, leading to higher fracture risk. Epidemiological data from China show a 20.7% prevalence in women and 14.4% in men over 50, underscoring a pressing health issue given the aging population. More drugs to inhibit OP progression should be explored, and their biological mechanisms confirmed in preclinical studies.

Methods: In this study, we utilized Lycium barbarum polysaccharide (LBP), an extract from the traditional Chinese medicine Goji Berry. LBP, known for its range of pharmacological activities, was assessed for its potential therapeutic effects on OP. We specifically investigated its influence on the proliferation, apoptosis, migration, and functional differentiation of osteoblasts and osteoclasts.

Results: LBP significantly promotes osteoblast proliferation, migration, and osteogenic differentiation. Conversely, it inhibits the intrinsic apoptotic response in osteoblasts. For osteoclasts, LBP suppressed their proliferation, migration, and osteoclastic differentiation while enhancing their natural apoptosis. These results were confirmed by classical protein pathway detection experiments.

Conclusion: LBP showcases potential therapeutic properties against OP, particularly in modulating osteoblast/osteoclast activities. While its exact mechanisms through vital signaling pathways remain to be fully elucidated, LBP's prominent effects suggest that it is a promising agent for OP intervention, warranting further in-depth studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Medicine
Open Medicine Medicine-General Medicine
CiteScore
3.00
自引率
0.00%
发文量
153
审稿时长
20 weeks
期刊介绍: Open Medicine is an open access journal that provides users with free, instant, and continued access to all content worldwide. The primary goal of the journal has always been a focus on maintaining the high quality of its published content. Its mission is to facilitate the exchange of ideas between medical science researchers from different countries. Papers connected to all fields of medicine and public health are welcomed. Open Medicine accepts submissions of research articles, reviews, case reports, letters to editor and book reviews.
期刊最新文献
Diagnostic value of ratio of blood inflammation to coagulation markers in periprosthetic joint infection. Review of mechanisms and frontier applications in IL-17A-induced hypertension. Clinical observation of probiotics combined with mesalazine and Yiyi Baitouweng Decoction retention enema in treating mild-to-moderate ulcerative colitis. Clinical analysis of ten cases of HIV infection combined with acute leukemia. Investigating the cardioprotective potential of quercetin against tacrolimus-induced cardiotoxicity in Wistar rats: A mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1