Tomato miR398 knockout disrupts ROS dynamics during stress conferring heat tolerance but hypersusceptibility to necrotroph infection.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2025-02-24 DOI:10.1007/s11103-025-01563-z
Shreya Chowdhury, Ananya Mukherjee, Raghuvir Singh, Sushmita Talukdar, Shrabani Basak, Rohit Das, Sayan Mal, Pallob Kundu
{"title":"Tomato miR398 knockout disrupts ROS dynamics during stress conferring heat tolerance but hypersusceptibility to necrotroph infection.","authors":"Shreya Chowdhury, Ananya Mukherjee, Raghuvir Singh, Sushmita Talukdar, Shrabani Basak, Rohit Das, Sayan Mal, Pallob Kundu","doi":"10.1007/s11103-025-01563-z","DOIUrl":null,"url":null,"abstract":"<p><p>An imbalance between ROS production and scavenging during stress results in oxidative bursts, which causes cellular damage. miR398 is a regulator of ROS scavenging since it targets crucial Cu/Zn superoxide dismutases (CSDs). Established functional studies aligned miR398 with plants' heat and heavy metal stress fitness. However, a knowledge gap in the dynamics of miR398-CSD interaction for redox regulation during pathogenic development impeded their use in crop improvement programmes. We use tomato, Solanum lycopersicum, plants, and necrotrophic and biotrophic pathogens to show that a complex transcriptional and post-transcriptional regulatory circuit maintains SlmiR398 and its target SlCSD genes' level. The interaction is indispensable for ROS regulation in either the pathogenic outcome, thermal stress, or a combination of both stresses, as observed in the cultivation field. The SlmiR398 knockout plants display feeble O2<sup>∙-</sup> accumulation but enhanced levels of H<sub>2</sub>O<sub>2</sub>, several defense-related genes, metabolites, and vital HSFs and HSPs, which were heightened upon stress. Depletion of SlmiR398, although it renders thermotolerance and resilience to biotrophic pathogens likely due to the augmented hypersensitive response, facilitates necrotrophy. Thus, SlmiR398-mediated ROS regulation seemingly works at the interface of abiotic and biotic stress response for a sustainable reaction of tomato plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"35"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01563-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An imbalance between ROS production and scavenging during stress results in oxidative bursts, which causes cellular damage. miR398 is a regulator of ROS scavenging since it targets crucial Cu/Zn superoxide dismutases (CSDs). Established functional studies aligned miR398 with plants' heat and heavy metal stress fitness. However, a knowledge gap in the dynamics of miR398-CSD interaction for redox regulation during pathogenic development impeded their use in crop improvement programmes. We use tomato, Solanum lycopersicum, plants, and necrotrophic and biotrophic pathogens to show that a complex transcriptional and post-transcriptional regulatory circuit maintains SlmiR398 and its target SlCSD genes' level. The interaction is indispensable for ROS regulation in either the pathogenic outcome, thermal stress, or a combination of both stresses, as observed in the cultivation field. The SlmiR398 knockout plants display feeble O2∙- accumulation but enhanced levels of H2O2, several defense-related genes, metabolites, and vital HSFs and HSPs, which were heightened upon stress. Depletion of SlmiR398, although it renders thermotolerance and resilience to biotrophic pathogens likely due to the augmented hypersensitive response, facilitates necrotrophy. Thus, SlmiR398-mediated ROS regulation seemingly works at the interface of abiotic and biotic stress response for a sustainable reaction of tomato plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
Phenylpropanoids for the control of fungal diseases of postharvest fruit. A smart multiplexed microRNA biosensor based on FRET for the prediction of mechanical damage and storage period of strawberry fruits. The involvement of auxin response factor OsARF7 in positively regulating root development by mediating the expression of OsCRL1 in rice (Oryza sativa L.). Barley young leaf chlorina, a putative pentatricopeptide repeat gene, is essential for chloroplast development in young leaves. Tomato miR398 knockout disrupts ROS dynamics during stress conferring heat tolerance but hypersusceptibility to necrotroph infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1