Multi-omics analysis of the accumulation mechanism of flavonoids in rice caryopsis under blue light.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2025-02-24 DOI:10.1007/s00299-025-03435-8
Ping Zhang, Yongsheng Tang, Juxiang Zhang, Junna Liu, Li Li, Hanxue Li, Liubin Huang, Guofei Jiang, Xuqin Wang, Lingyuan Zhang, Yutao Bai, Peng Qin
{"title":"Multi-omics analysis of the accumulation mechanism of flavonoids in rice caryopsis under blue light.","authors":"Ping Zhang, Yongsheng Tang, Juxiang Zhang, Junna Liu, Li Li, Hanxue Li, Liubin Huang, Guofei Jiang, Xuqin Wang, Lingyuan Zhang, Yutao Bai, Peng Qin","doi":"10.1007/s00299-025-03435-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Blue light influences the MYB gene family, resulting in varying accumulations of different flavonoids in rice caryopsis at distinct developmental stages, with a higher concentration observed in the initial stage. The regulatory effect of blue light on plant flavonoids has been extensively documented; however, its influence on the development of rice caryopsis morphology remains unreported. Through the analysis of transcriptomes, proteomes, and metabolites, combined with Weighted Gene Co-expression Network Analysis (WGCNA), the accumulation of flavonoids in rice caryopsis under blue light at various developmental stages was thoroughly examined. Furthermore, four MYB family transcription factors (TFs) that significantly influence the structural genes involved in flavonoid biosynthesis were identified. The results indicate that the accumulation of flavonoids primarily occurs during the early stages of caryopsis development. Key structural genes, including PAL, 4CL, CHS, CHI, F3H, and FLS, are upregulated in both gene and protein expression when exposed to blue light. Moreover, the WGCNA analysis identified several TFs that may influence these genes, including Os08t0144000-01 and Os01t0695900-01, as well as the proteins Q7F3D6, Q2QM89, A0A0P0W9C3, and Q6ZDM0, all of which belong to the MYB family. The research has enhanced our understanding of flavonoid accumulation in rice caryopsis when exposed to blue light. It also establishes a framework for the synthesis of secondary metabolites induced by blue light, thereby creating more opportunities to enhance the quality of horticultural plants.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 3","pages":"64"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03435-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Blue light influences the MYB gene family, resulting in varying accumulations of different flavonoids in rice caryopsis at distinct developmental stages, with a higher concentration observed in the initial stage. The regulatory effect of blue light on plant flavonoids has been extensively documented; however, its influence on the development of rice caryopsis morphology remains unreported. Through the analysis of transcriptomes, proteomes, and metabolites, combined with Weighted Gene Co-expression Network Analysis (WGCNA), the accumulation of flavonoids in rice caryopsis under blue light at various developmental stages was thoroughly examined. Furthermore, four MYB family transcription factors (TFs) that significantly influence the structural genes involved in flavonoid biosynthesis were identified. The results indicate that the accumulation of flavonoids primarily occurs during the early stages of caryopsis development. Key structural genes, including PAL, 4CL, CHS, CHI, F3H, and FLS, are upregulated in both gene and protein expression when exposed to blue light. Moreover, the WGCNA analysis identified several TFs that may influence these genes, including Os08t0144000-01 and Os01t0695900-01, as well as the proteins Q7F3D6, Q2QM89, A0A0P0W9C3, and Q6ZDM0, all of which belong to the MYB family. The research has enhanced our understanding of flavonoid accumulation in rice caryopsis when exposed to blue light. It also establishes a framework for the synthesis of secondary metabolites induced by blue light, thereby creating more opportunities to enhance the quality of horticultural plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
NIN-like proteins NLP8 negatively regulate drought resistance in Arabidopsis by regulating the expression level of PUB23. Multi-omics analysis of the accumulation mechanism of flavonoids in rice caryopsis under blue light. RsWRKY75 promotes ROS scavenging and cadmium efflux via activating the transcription of RsAPX1 and RsPDR8 in radish (Raphanus sativus L.). PnNAC03 from Panax notoginseng functions in positively regulating saponins and lignin biosynthesis during cell wall formation. CRISPR/Cas9-mediated editing of eukaryotic elongation factor 1B gamma (eEF1Bγ) reduces Tobacco etch virus accumulation in Nicotiana benthamiana.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1