[Lycium barbarum Polysaccharide Improves Reproductive Injury in Female Rats Exposed to High-Altitude Hypoxic Environment: Investigation of the Mechanisms Involved].
Xiaojing Zhang, Yan Zhong, Hongfang Mu, Feifei Liu, Xiwen Chang, Rong Wang
{"title":"[<i>Lycium barbarum</i> Polysaccharide Improves Reproductive Injury in Female Rats Exposed to High-Altitude Hypoxic Environment: Investigation of the Mechanisms Involved].","authors":"Xiaojing Zhang, Yan Zhong, Hongfang Mu, Feifei Liu, Xiwen Chang, Rong Wang","doi":"10.12182/20241160203","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the protective effect of <i>Lycium barbarum</i> polysaccharide (LBP) on reproductive system damage induced by exposure to high-altitude hypoxic environment in female rats, and to explore the mechanisms involved.</p><p><strong>Methods: </strong>After undergoing physiological synchronization, 30 female Wistar rats were randomly and evenly assigned to 3 groups, including a plain control (C) group, a high-altitude hypoxia (H) group, and a high-altitude hypoxia + LBP (H-LBP) group. The C group was placed in a region at an altitude of 1500 m above sea level (with an oxygen volume fraction of 18.55%), while the H group and the H-LBP group were placed in a region at an altitude of 4010 m above sea level (with an oxygen volume fraction of 12.70%). Rats in the H-LBP group were fed with LBP at 75 mg/kg via gastric gavage, while the C and H groups received normal saline once a day for 14 days in a row. Changes in estrous cycles were documented throughout the experiment. At the end of the experiment, the serum levels of reproductive hormones and the levels of oxidative stress in the ovarian and uterine tissues were measured. Morphological changes in the ovarian and uterine tissues were assessed using hematoxylin-eosin (HE) staining. A component-target-pathway network diagram was constructed using network pharmacology methods to analyze the key targets and pathways.</p><p><strong>Results: </strong>Compared with the C group, rats in the H group had disrupted estrous cycles and significantly lower serum levels of reproductive hormones (all <i>P</i><0.05). In addition, rats in the H group had increased oxidative stress damage and experienced pathological damage in the ovarian and uterine tissues. However, compared with those of the H group, the estrous cycle in the H-LBP group became normalized after the administration of LBP and the serum levels of estradiol (E2), progesterone (P), luteinizing hormone (LH), and anti- Müllerian hormone (AMH) were significantly increased in H-LBP group (all <i>P</i><0.05). In the ovarian tissue, the malondialdehyde (MDA) content was significantly reduced, superoxide dismutase (SOD) activity was increased, and the content of reduced glutathione (GSH) was increased. In addition, in the uterine tissue, the MDA content was reduced and SOD activity was increased (all <i>P</i><0.05), with LBP significantly improving the pathological damage to the reproductive organs of female rats caused by high-altitude hypoxic environment. Through network pharmacology analysis, we identified 76 potential targets for the protective effect of LBP against high-altitude hypoxia-induced reproductive injury, and the targets were mainly involved in the signaling pathways such as calcium channels, PI3K-Akt, MAPK, and HIF-1.</p><p><strong>Conclusion: </strong>LBP can ameliorate high-altitude hypoxia-induced reproductive damage in female rats. The mechanisms involved may be associated with the regulation of PI3K-Akt, MAPK, and HIF-1 pathways.</p>","PeriodicalId":39321,"journal":{"name":"四川大学学报(医学版)","volume":"55 6","pages":"1477-1484"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"四川大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12182/20241160203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the protective effect of Lycium barbarum polysaccharide (LBP) on reproductive system damage induced by exposure to high-altitude hypoxic environment in female rats, and to explore the mechanisms involved.
Methods: After undergoing physiological synchronization, 30 female Wistar rats were randomly and evenly assigned to 3 groups, including a plain control (C) group, a high-altitude hypoxia (H) group, and a high-altitude hypoxia + LBP (H-LBP) group. The C group was placed in a region at an altitude of 1500 m above sea level (with an oxygen volume fraction of 18.55%), while the H group and the H-LBP group were placed in a region at an altitude of 4010 m above sea level (with an oxygen volume fraction of 12.70%). Rats in the H-LBP group were fed with LBP at 75 mg/kg via gastric gavage, while the C and H groups received normal saline once a day for 14 days in a row. Changes in estrous cycles were documented throughout the experiment. At the end of the experiment, the serum levels of reproductive hormones and the levels of oxidative stress in the ovarian and uterine tissues were measured. Morphological changes in the ovarian and uterine tissues were assessed using hematoxylin-eosin (HE) staining. A component-target-pathway network diagram was constructed using network pharmacology methods to analyze the key targets and pathways.
Results: Compared with the C group, rats in the H group had disrupted estrous cycles and significantly lower serum levels of reproductive hormones (all P<0.05). In addition, rats in the H group had increased oxidative stress damage and experienced pathological damage in the ovarian and uterine tissues. However, compared with those of the H group, the estrous cycle in the H-LBP group became normalized after the administration of LBP and the serum levels of estradiol (E2), progesterone (P), luteinizing hormone (LH), and anti- Müllerian hormone (AMH) were significantly increased in H-LBP group (all P<0.05). In the ovarian tissue, the malondialdehyde (MDA) content was significantly reduced, superoxide dismutase (SOD) activity was increased, and the content of reduced glutathione (GSH) was increased. In addition, in the uterine tissue, the MDA content was reduced and SOD activity was increased (all P<0.05), with LBP significantly improving the pathological damage to the reproductive organs of female rats caused by high-altitude hypoxic environment. Through network pharmacology analysis, we identified 76 potential targets for the protective effect of LBP against high-altitude hypoxia-induced reproductive injury, and the targets were mainly involved in the signaling pathways such as calcium channels, PI3K-Akt, MAPK, and HIF-1.
Conclusion: LBP can ameliorate high-altitude hypoxia-induced reproductive damage in female rats. The mechanisms involved may be associated with the regulation of PI3K-Akt, MAPK, and HIF-1 pathways.
四川大学学报(医学版)Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
0.70
自引率
0.00%
发文量
8695
期刊介绍:
"Journal of Sichuan University (Medical Edition)" is a comprehensive medical academic journal sponsored by Sichuan University, a higher education institution directly under the Ministry of Education of the People's Republic of China. It was founded in 1959 and was originally named "Journal of Sichuan Medical College". In 1986, it was renamed "Journal of West China University of Medical Sciences". In 2003, it was renamed "Journal of Sichuan University (Medical Edition)" (bimonthly).
"Journal of Sichuan University (Medical Edition)" is a Chinese core journal and a Chinese authoritative academic journal (RCCSE). It is included in the retrieval systems such as China Science and Technology Papers and Citation Database (CSTPCD), China Science Citation Database (CSCD) (core version), Peking University Library's "Overview of Chinese Core Journals", the U.S. "Index Medica" (IM/Medline), the U.S. "PubMed Central" (PMC), the U.S. "Biological Abstracts" (BA), the U.S. "Chemical Abstracts" (CA), the U.S. EBSCO, the Netherlands "Abstracts and Citation Database" (Scopus), the Japan Science and Technology Agency Database (JST), the Russian "Abstract Magazine", the Chinese Biomedical Literature CD-ROM Database (CBMdisc), the Chinese Biomedical Periodical Literature Database (CMCC), the China Academic Journal Network Full-text Database (CNKI), the Chinese Academic Journal (CD-ROM Edition), and the Wanfang Data-Digital Journal Group.