Dynamic Buffer Management in Massively Parallel Systems: The Power of Randomness.

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Parallel Computing Pub Date : 2025-03-01 Epub Date: 2025-02-11 DOI:10.1145/3701623
Minh Pham, Yongke Yuan, Hao Li, Chengcheng Mou, Yicheng Tu, Zichen Xu, Jinghan Meng
{"title":"Dynamic Buffer Management in Massively Parallel Systems: The Power of Randomness.","authors":"Minh Pham, Yongke Yuan, Hao Li, Chengcheng Mou, Yicheng Tu, Zichen Xu, Jinghan Meng","doi":"10.1145/3701623","DOIUrl":null,"url":null,"abstract":"<p><p>Massively parallel systems, such as Graphics Processing Units (GPUs), play an increasingly crucial role in today's data-intensive computing. The unique challenges associated with developing system software for massively parallel hardware to support numerous parallel threads efficiently are of paramount importance. One such challenge is the design of a dynamic memory allocator to allocate memory at runtime. Traditionally, memory allocators have relied on maintaining a global data structure, such as a queue of free pages. However, in the context of massively parallel systems, accessing such global data structures can quickly become a bottleneck even with multiple queues in place. This paper presents a novel approach to dynamic memory allocation that eliminates the need for a centralized data structure. Our proposed approach revolves around letting threads employ random search procedures to locate free pages. Through mathematical proofs and extensive experiments, we demonstrate that the basic random search design achieves lower latency than the best-known existing solution in most situations. Furthermore, we develop more advanced techniques and algorithms to tackle the challenge of warp divergence and further enhance performance when free memory is limited. Building upon these advancements, our mathematical proofs and experimental results affirm that these advanced designs can yield an order of magnitude improvement over the basic design and consistently outperform the state-of-the-art by up to two orders of magnitude. To illustrate the practical implications of our work, we integrate our memory management techniques into two GPU algorithms: a hash join and a group-by. Both case studies provide compelling evidence of our approach's pronounced performance gains.</p>","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3701623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Massively parallel systems, such as Graphics Processing Units (GPUs), play an increasingly crucial role in today's data-intensive computing. The unique challenges associated with developing system software for massively parallel hardware to support numerous parallel threads efficiently are of paramount importance. One such challenge is the design of a dynamic memory allocator to allocate memory at runtime. Traditionally, memory allocators have relied on maintaining a global data structure, such as a queue of free pages. However, in the context of massively parallel systems, accessing such global data structures can quickly become a bottleneck even with multiple queues in place. This paper presents a novel approach to dynamic memory allocation that eliminates the need for a centralized data structure. Our proposed approach revolves around letting threads employ random search procedures to locate free pages. Through mathematical proofs and extensive experiments, we demonstrate that the basic random search design achieves lower latency than the best-known existing solution in most situations. Furthermore, we develop more advanced techniques and algorithms to tackle the challenge of warp divergence and further enhance performance when free memory is limited. Building upon these advancements, our mathematical proofs and experimental results affirm that these advanced designs can yield an order of magnitude improvement over the basic design and consistently outperform the state-of-the-art by up to two orders of magnitude. To illustrate the practical implications of our work, we integrate our memory management techniques into two GPU algorithms: a hash join and a group-by. Both case studies provide compelling evidence of our approach's pronounced performance gains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
期刊最新文献
Dynamic Buffer Management in Massively Parallel Systems: The Power of Randomness. Introduction to the Special Issue for SPAA’21 A Conflict-Resilient Lock-Free Linearizable Calendar Queue HPS Cholesky: Hierarchical Parallelized Supernodal Cholesky with Adaptive Parameters Improved Online Scheduling of Moldable Task Graphs under Common Speedup Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1