{"title":"Next generation sequencing and genomic mapping: towards precision molecular diagnosis of lung cancer in Morocco.","authors":"Ouafaa Morjani, Noura Mounaji, Meriem Ghaouti, Hassan Errihani, Elmostafa El Fahime, Hamid Lakhiari","doi":"10.11604/pamj.2024.49.75.45306","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>lung cancer is the leading cause of cancer-related deaths worldwide, with a significant incidence in Morocco. The complex epidemiology of this disease in the country necessitates an in-depth analysis of genetic profiles to improve diagnosis and treatment. This study utilizes next-generation sequencing (NGS) to map genetic alterations in Moroccan patients with lung cancer, a field where molecular data is largely lacking. Importantly, this study presents a pioneering analysis of lung cancer in the Moroccan population using next-generation sequencing technology. While previous studies focused on a limited number of genes, our research provides a comprehensive and detailed perspective on the genetic alterations within this cohort, including the generation of an oncoprint.</p><p><strong>Methods: </strong>this study involved 100 histologically confirmed lung cancer patients. Genetic abnormalities were detected using the NGS technique with the Oncomine Precision Assay GX protocol. Lung biopsy samples were prepared, purified, and sequenced, with the resulting data analyzed to identify significant genetic variants.</p><p><strong>Results: </strong>the analysis revealed genetic alterations in 13 different genes, with a notable prevalence of mutations in the TP53, KRAS, and Epithelial Growth Factor Receptor (EGFR) genes. TP53 mutations were present in 27% of cases, while KRAS and EGFR showed mutations in 19% and 14% of samples, respectively. Clinically significant mutations were also identified in the ALK, MET, ERBB2, and ROS1 genes, highlighting substantial genomic diversity in this cohort.</p><p><strong>Conclusion: </strong>the results of this study enhance the understanding of genetic alterations in Moroccan lung cancer patients and underscore the need to strengthen efforts for advanced molecular diagnosis in Morocco. The use of NGS has identified critical genetic mutations, facilitating the development of personalized treatments and improving clinical outcomes. These findings pave the way for future research aimed at refining diagnostic and therapeutic strategies, thereby contributing to better patient management.</p>","PeriodicalId":48190,"journal":{"name":"Pan African Medical Journal","volume":"49 ","pages":"75"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pan African Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11604/pamj.2024.49.75.45306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: lung cancer is the leading cause of cancer-related deaths worldwide, with a significant incidence in Morocco. The complex epidemiology of this disease in the country necessitates an in-depth analysis of genetic profiles to improve diagnosis and treatment. This study utilizes next-generation sequencing (NGS) to map genetic alterations in Moroccan patients with lung cancer, a field where molecular data is largely lacking. Importantly, this study presents a pioneering analysis of lung cancer in the Moroccan population using next-generation sequencing technology. While previous studies focused on a limited number of genes, our research provides a comprehensive and detailed perspective on the genetic alterations within this cohort, including the generation of an oncoprint.
Methods: this study involved 100 histologically confirmed lung cancer patients. Genetic abnormalities were detected using the NGS technique with the Oncomine Precision Assay GX protocol. Lung biopsy samples were prepared, purified, and sequenced, with the resulting data analyzed to identify significant genetic variants.
Results: the analysis revealed genetic alterations in 13 different genes, with a notable prevalence of mutations in the TP53, KRAS, and Epithelial Growth Factor Receptor (EGFR) genes. TP53 mutations were present in 27% of cases, while KRAS and EGFR showed mutations in 19% and 14% of samples, respectively. Clinically significant mutations were also identified in the ALK, MET, ERBB2, and ROS1 genes, highlighting substantial genomic diversity in this cohort.
Conclusion: the results of this study enhance the understanding of genetic alterations in Moroccan lung cancer patients and underscore the need to strengthen efforts for advanced molecular diagnosis in Morocco. The use of NGS has identified critical genetic mutations, facilitating the development of personalized treatments and improving clinical outcomes. These findings pave the way for future research aimed at refining diagnostic and therapeutic strategies, thereby contributing to better patient management.