Ventilator pressure prediction employing voting regressor with time series data of patient breaths.

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Health Informatics Journal Pub Date : 2025-01-01 DOI:10.1177/14604582241295912
Ali Raza, Furqan Rustam, Hafeez Ur Rehman Siddiqui, Emmanuel Soriano Flores, Juan Luis Vidal Mazón, Isabel de la Torre Díez, María Asunción Vicente Ripoll, Imran Ashraf
{"title":"Ventilator pressure prediction employing voting regressor with time series data of patient breaths.","authors":"Ali Raza, Furqan Rustam, Hafeez Ur Rehman Siddiqui, Emmanuel Soriano Flores, Juan Luis Vidal Mazón, Isabel de la Torre Díez, María Asunción Vicente Ripoll, Imran Ashraf","doi":"10.1177/14604582241295912","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> Mechanical ventilator plays a vital role in saving millions of lives. Patients with COVID-19 symptoms need a ventilator to survive during the pandemic. Studies have reported that the mortality rates rise from 50% to 97% in those requiring mechanical ventilation during COVID-19. The pumping of air into the patient's lungs using a ventilator requires a particular air pressure. High or low ventilator pressure can result in a patient's life loss as high air pressure in the ventilator causes the patient lung damage while lower pressure provides insufficient oxygen. Consequently, precise prediction of ventilator pressure is a task of great significance in this regard. The primary aim of this study is to predict the airway pressure in the ventilator respiratory circuit during the breath. <b>Methods:</b> A novel hybrid ventilator pressure predictor (H-VPP) approach is proposed. The ventilator exploratory data analysis reveals that the high values of lung attributes R and C during initial time step values are the prominent causes of high ventilator pressure. <b>Results:</b> Experiments using the proposed approach indicate H-VPP achieves a 0.78 R<sup>2</sup>, mean absolute error of 0.028, and mean squared error of 0.003. These results are better than other machine learning and deep learning models employed in this study. <b>Conclusion:</b> Extensive experimentation indicates the superior performance of the proposed approach for ventilator pressure prediction with high accuracy. Furthermore, performance comparison with state-of-the-art studies corroborates the superior performance of the proposed approach.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 1","pages":"14604582241295912"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241295912","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Mechanical ventilator plays a vital role in saving millions of lives. Patients with COVID-19 symptoms need a ventilator to survive during the pandemic. Studies have reported that the mortality rates rise from 50% to 97% in those requiring mechanical ventilation during COVID-19. The pumping of air into the patient's lungs using a ventilator requires a particular air pressure. High or low ventilator pressure can result in a patient's life loss as high air pressure in the ventilator causes the patient lung damage while lower pressure provides insufficient oxygen. Consequently, precise prediction of ventilator pressure is a task of great significance in this regard. The primary aim of this study is to predict the airway pressure in the ventilator respiratory circuit during the breath. Methods: A novel hybrid ventilator pressure predictor (H-VPP) approach is proposed. The ventilator exploratory data analysis reveals that the high values of lung attributes R and C during initial time step values are the prominent causes of high ventilator pressure. Results: Experiments using the proposed approach indicate H-VPP achieves a 0.78 R2, mean absolute error of 0.028, and mean squared error of 0.003. These results are better than other machine learning and deep learning models employed in this study. Conclusion: Extensive experimentation indicates the superior performance of the proposed approach for ventilator pressure prediction with high accuracy. Furthermore, performance comparison with state-of-the-art studies corroborates the superior performance of the proposed approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
期刊最新文献
Researching public health datasets in the era of deep learning: a systematic literature review. A blueprint for large language model-augmented telehealth for HIV mitigation in Indonesia: A scoping review of a novel therapeutic modality. Advancing African American and hispanic health literacy with a bilingual, personalized, prevention smartphone application. Evaluating the quality of Spanish-language information for patients with type 2 diabetes on YouTube and Facebook. Pathways to usage intention of mobile health apps among hypertensive patients: A fuzzy-set qualitative comparative analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1