Comparing glucose acquisition strategies between two ancient fish species: Lake sturgeon (Acipenser fulvescens) and North Pacific spiny dogfish (Squalus suckleyi).

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology Pub Date : 2025-02-21 DOI:10.1016/j.cbpa.2025.111829
Jenna M Drummond, W Gary Anderson, Alyssa M Weinrauch
{"title":"Comparing glucose acquisition strategies between two ancient fish species: Lake sturgeon (Acipenser fulvescens) and North Pacific spiny dogfish (Squalus suckleyi).","authors":"Jenna M Drummond, W Gary Anderson, Alyssa M Weinrauch","doi":"10.1016/j.cbpa.2025.111829","DOIUrl":null,"url":null,"abstract":"<p><p>We assessed the functional role of the spiral valve in carbohydrate digestion and glucose acquisition during different feeding states in Acipenser fulvescens and Squalus suckleyi. For S. suckleyi, maltase activity was highest in the anterior and mid spiral valve, while sodium-glucose linked transporter 1 (sglt1) transcripts peaked in the mid spiral valve. Alongside these metrics, glucose tissue uptake demonstrated decreased maximal transport rates from 24 h to 7+ days post feeding, demonstrating a putative means for energy conservation. A. fulvescens showed the highest maltase activity and sglt1 abundance in regions anterior to the spiral valve (pyloric ceca and anterior intestine). Additionally, glucose transport did not reach saturation in the spiral valve and anterior intestine of A. fulvescens over the measured concentrations, suggestive of a heightened capacity in these regions for glucose uptake. Overall, the spiral valve played a primary role in glucose digestion and transport in S. suckleyi, whereas A. fulvescens utilized the anterior intestine in addition to the spiral valve. Combined, these results also suggest regional functionality of carbohydrate acquisition within the spiral intestine in S. suckleyi but not in A. fulvescens. This demonstrates that the spiral valve may not always be the primary region of nutrient absorption in all species as suggested in the literature, highlighting the importance of comparing morphological and functional studies.</p>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":" ","pages":"111829"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpa.2025.111829","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We assessed the functional role of the spiral valve in carbohydrate digestion and glucose acquisition during different feeding states in Acipenser fulvescens and Squalus suckleyi. For S. suckleyi, maltase activity was highest in the anterior and mid spiral valve, while sodium-glucose linked transporter 1 (sglt1) transcripts peaked in the mid spiral valve. Alongside these metrics, glucose tissue uptake demonstrated decreased maximal transport rates from 24 h to 7+ days post feeding, demonstrating a putative means for energy conservation. A. fulvescens showed the highest maltase activity and sglt1 abundance in regions anterior to the spiral valve (pyloric ceca and anterior intestine). Additionally, glucose transport did not reach saturation in the spiral valve and anterior intestine of A. fulvescens over the measured concentrations, suggestive of a heightened capacity in these regions for glucose uptake. Overall, the spiral valve played a primary role in glucose digestion and transport in S. suckleyi, whereas A. fulvescens utilized the anterior intestine in addition to the spiral valve. Combined, these results also suggest regional functionality of carbohydrate acquisition within the spiral intestine in S. suckleyi but not in A. fulvescens. This demonstrates that the spiral valve may not always be the primary region of nutrient absorption in all species as suggested in the literature, highlighting the importance of comparing morphological and functional studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
期刊最新文献
Comparing glucose acquisition strategies between two ancient fish species: Lake sturgeon (Acipenser fulvescens) and North Pacific spiny dogfish (Squalus suckleyi). From sensory organs to internal pathways: A comprehensive review of amino acid sensing in Drosophila Molecular and physiological characterizations of razor clam (Sinonovacula constricta) aquaporin genes AQP4 and AQP10 in response to low-salinity tolerance Neuropeptide Y at the crossroads of male reproductive functions in a seasonally breeding reptile, Hemidactylus flaviviridis The brine shrimp Artemia franciscana as a model for astrobiological studies: Physiological adaptations to Mars-like atmospheric pressure conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1