COME: contrastive mapping learning for spatial reconstruction of scRNA-seq data.

Xindian Wei, Tianyi Chen, Xibiao Wang, Wenjun Shen, Cheng Liu, Si Wu, Hau-San Wong
{"title":"COME: contrastive mapping learning for spatial reconstruction of scRNA-seq data.","authors":"Xindian Wei, Tianyi Chen, Xibiao Wang, Wenjun Shen, Cheng Liu, Si Wu, Hau-San Wong","doi":"10.1093/bioinformatics/btaf083","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Single-cell RNA sequencing (scRNA-seq) enables high-throughput transcriptomic profiling at single-cell resolution. The inherent spatial location is crucial for understanding how single cells orchestrate multicellular functions and drive diseases. However, spatial information is often lost during tissue dissociation. Spatial transcriptomic (ST) technologies can provide precise spatial gene expression atlas, while their practicality is constrained by the number of genes they can assay or the associated costs at a larger scale and the fine-grained cell type annotation. By transferring knowledge between scRNA-seq and spatial transcriptomics data through cell correspondence learning, it is possible to recover the spatial properties inherent in scRNA-seq datasets.</p><p><strong>Results: </strong>In this study, we introduce COME, a COntrastive Mapping lEarning approach that learns mapping between ST and scRNA-seq data to recover the spatial information of scRNA-seq data. Extensive experiments demonstrate that the proposed COME method effectively captures precise cell-spot relationships and outperforms previous methods in recovering spatial location for scRNA-seq data. More importantly, our method is capable of precisely identifying biologically meaningful information within the data, such as the spatial structure of missing genes, spatial hierarchical patterns, and the cell-type compositions for each spot. These results indicate that the proposed COME method can help to understand the heterogeneity and activities among cells within tissue environments.</p><p><strong>Availability and implementation: </strong>The COME is freely available in GitHub (https://github.com/cindyway/COME).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) enables high-throughput transcriptomic profiling at single-cell resolution. The inherent spatial location is crucial for understanding how single cells orchestrate multicellular functions and drive diseases. However, spatial information is often lost during tissue dissociation. Spatial transcriptomic (ST) technologies can provide precise spatial gene expression atlas, while their practicality is constrained by the number of genes they can assay or the associated costs at a larger scale and the fine-grained cell type annotation. By transferring knowledge between scRNA-seq and spatial transcriptomics data through cell correspondence learning, it is possible to recover the spatial properties inherent in scRNA-seq datasets.

Results: In this study, we introduce COME, a COntrastive Mapping lEarning approach that learns mapping between ST and scRNA-seq data to recover the spatial information of scRNA-seq data. Extensive experiments demonstrate that the proposed COME method effectively captures precise cell-spot relationships and outperforms previous methods in recovering spatial location for scRNA-seq data. More importantly, our method is capable of precisely identifying biologically meaningful information within the data, such as the spatial structure of missing genes, spatial hierarchical patterns, and the cell-type compositions for each spot. These results indicate that the proposed COME method can help to understand the heterogeneity and activities among cells within tissue environments.

Availability and implementation: The COME is freely available in GitHub (https://github.com/cindyway/COME).

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting circRNA-disease associations with shared units and multi-channel attention mechanisms. Vcfgl: A flexible genotype likelihood simulator for VCF/BCF files. FlowPacker: protein side-chain packing with torsional flow matching. SP-DTI: subpocket-informed transformer for drug-target interaction prediction. Relative quantification of proteins and post-translational modifications in proteomic experiments with shared peptides: a weight-based approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1