SP-DTI: Subpocket-Informed Transformer for Drug-Target Interaction Prediction.

Sizhe Liu, Yuchen Liu, Haofeng Xu, Jun Xia, Stan Z Li
{"title":"SP-DTI: Subpocket-Informed Transformer for Drug-Target Interaction Prediction.","authors":"Sizhe Liu, Yuchen Liu, Haofeng Xu, Jun Xia, Stan Z Li","doi":"10.1093/bioinformatics/btaf011","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Drug-target interaction (DTI) prediction is crucial for drug discovery, significantly reducing costs and time in experimental searches across vast drug compound spaces. While deep learning has advanced DTI prediction accuracy, challenges remain: (i) existing methods often lack generalizability, with performance dropping significantly on unseen proteins and cross-domain settings; (ii) current molecular relational learning often overlooks subpocket-level interactions, which are vital for a detailed understanding of binding sites.</p><p><strong>Results: </strong>We introduce SP-DTI, a subpocket-informed transformer model designed to address these challenges through: (i) detailed subpocket analysis using the Cavity Identification and Analysis Routine (CAVIAR) for interaction modeling at both global and local levels, and (ii) integration of pre-trained language models into graph neural networks to encode drugs and proteins, enhancing generalizability to unlabeled data. Benchmark evaluations show that SP-DTI consistently outperforms state-of-the-art models, achieving a ROC-AUC of 0.873 in unseen protein settings, an 11% improvement over the best baseline.</p><p><strong>Availability and implementation: </strong>The model scripts are available at https://github.com/Steven51516/SP-DTI.</p><p><strong>Contact and supplementary information: </strong>For correspondence, please contact xiajun@westlake.edu.cn. Supplementary data are available online at Bioinformatics.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Drug-target interaction (DTI) prediction is crucial for drug discovery, significantly reducing costs and time in experimental searches across vast drug compound spaces. While deep learning has advanced DTI prediction accuracy, challenges remain: (i) existing methods often lack generalizability, with performance dropping significantly on unseen proteins and cross-domain settings; (ii) current molecular relational learning often overlooks subpocket-level interactions, which are vital for a detailed understanding of binding sites.

Results: We introduce SP-DTI, a subpocket-informed transformer model designed to address these challenges through: (i) detailed subpocket analysis using the Cavity Identification and Analysis Routine (CAVIAR) for interaction modeling at both global and local levels, and (ii) integration of pre-trained language models into graph neural networks to encode drugs and proteins, enhancing generalizability to unlabeled data. Benchmark evaluations show that SP-DTI consistently outperforms state-of-the-art models, achieving a ROC-AUC of 0.873 in unseen protein settings, an 11% improvement over the best baseline.

Availability and implementation: The model scripts are available at https://github.com/Steven51516/SP-DTI.

Contact and supplementary information: For correspondence, please contact xiajun@westlake.edu.cn. Supplementary data are available online at Bioinformatics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SP-DTI:用于药物-靶标相互作用预测的子口袋知情转换器。
动机药物-靶点相互作用(DTI)预测对于药物发现至关重要,它能显著降低在庞大的药物化合物空间中进行实验搜索的成本和时间。虽然深度学习提高了 DTI 预测的准确性,但挑战依然存在:(i) 现有方法往往缺乏通用性,在未见过的蛋白质和跨领域设置上性能大幅下降;(ii) 当前的分子关系学习往往忽略了亚口袋级的相互作用,而这对于详细了解结合位点至关重要:我们介绍了 SP-DTI,这是一种子口袋信息转换器模型,旨在通过以下方法应对这些挑战:(i) 利用空腔识别和分析例程(CAVIAR)进行详细的子口袋分析,以建立全局和局部水平的相互作用模型;(ii) 将预先训练好的语言模型整合到图神经网络中,以编码药物和蛋白质,从而增强对无标记数据的通用性。基准评估表明,SP-DTI 的表现始终优于最先进的模型,在未见蛋白质的情况下,ROC-AUC 达到 0.873,比最佳基准提高了 11%:模型脚本可在 https://github.com/Steven51516/SP-DTI.Contact 和补充信息中获取:如需通信,请联系 xiajun@westlake.edu.cn。补充数据可从 Bioinformatics 在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1