Rising Temperatures Drive Lower Summer Minimum Flows Across Hydrologically Diverse Catchments in British Columbia

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-02-24 DOI:10.1029/2024wr038057
S. W. Ruzzante, T. Gleeson
{"title":"Rising Temperatures Drive Lower Summer Minimum Flows Across Hydrologically Diverse Catchments in British Columbia","authors":"S. W. Ruzzante, T. Gleeson","doi":"10.1029/2024wr038057","DOIUrl":null,"url":null,"abstract":"Excessively low stream flows harm ecosystems and societies, so two key goals of low-flow hydrology are to understand their drivers and to predict their severity and frequency. We show that linear regressions can accomplish both goals across diverse catchments. We analyze 230 unregulated moderate to high relief catchments across rainfall-dominated, hybrid, snowmelt-dominated, and glacial regimes in British Columbia, Canada, with drainage areas spanning 5 orders of magnitude from 0.5 to 55,000 km<sup>2</sup>. Summer low flows are decreasing in rainfall-dominated and hybrid catchments but have been stable in catchments that remain snowmelt or glacial-dominated. However, we find that since 1950 approximately one third of snowmelt-dominated catchments have transitioned to a hybrid rain-snow regime. The declines in rainfall-dominated and hybrid catchments are dominantly driven by summer precipitation and temperature, and only weakly influenced by winter storage. We apply this understanding to create regression models that predict the minimum summer flow using monthly temperature and precipitation data. These models outperform distributed process-based models for every common goodness-of-fit metric; the performance improvement is mostly a result of abandoning the requirement to simulate all parts of the annual hydrograph. Using these regression models we reconstruct streamflow droughts and low flow anomalies from 1901 to 2022. We reproduce recent drying trends in rainfall-dominated and hybrid catchments, but also show that present conditions are comparable to those seen one hundred years ago. However, anomalously low flows last century were caused by large precipitation deficits while current declines are driven by rising summer temperatures despite near-normal precipitation.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"7 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038057","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Excessively low stream flows harm ecosystems and societies, so two key goals of low-flow hydrology are to understand their drivers and to predict their severity and frequency. We show that linear regressions can accomplish both goals across diverse catchments. We analyze 230 unregulated moderate to high relief catchments across rainfall-dominated, hybrid, snowmelt-dominated, and glacial regimes in British Columbia, Canada, with drainage areas spanning 5 orders of magnitude from 0.5 to 55,000 km2. Summer low flows are decreasing in rainfall-dominated and hybrid catchments but have been stable in catchments that remain snowmelt or glacial-dominated. However, we find that since 1950 approximately one third of snowmelt-dominated catchments have transitioned to a hybrid rain-snow regime. The declines in rainfall-dominated and hybrid catchments are dominantly driven by summer precipitation and temperature, and only weakly influenced by winter storage. We apply this understanding to create regression models that predict the minimum summer flow using monthly temperature and precipitation data. These models outperform distributed process-based models for every common goodness-of-fit metric; the performance improvement is mostly a result of abandoning the requirement to simulate all parts of the annual hydrograph. Using these regression models we reconstruct streamflow droughts and low flow anomalies from 1901 to 2022. We reproduce recent drying trends in rainfall-dominated and hybrid catchments, but also show that present conditions are comparable to those seen one hundred years ago. However, anomalously low flows last century were caused by large precipitation deficits while current declines are driven by rising summer temperatures despite near-normal precipitation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
High-Fidelity Numerical Study of the Effect of Wing Dam Fields on Flood Stage in Rivers Bushfire Impact on Drinking Water Distribution Networks and Investigation Methods: A Review Flow Resistance and Hydraulic Geometry in Gravel-And Boulder-Bed Rivers Dynamics of Saltwater Intrusion Into Coastal Freshwaters in the California Central Coast The Evolution of Hydrodynamic Intensities and Sediment Erosion Along Submerged Aquatic Vegetation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1