Boosting Ion Conduction and Moisture Stability Through Zn2+ Substitution of Chloride Electrolytes for All-Solid-State Lithium Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-02-25 DOI:10.1002/aenm.202405760
Peng Lei, Gang Wu, Hong Liu, Xiang Qi, Meng Wu, Dabing Li, Yang Li, Lei Gao, Ce-Wen Nan, Li-Zhen Fan
{"title":"Boosting Ion Conduction and Moisture Stability Through Zn2+ Substitution of Chloride Electrolytes for All-Solid-State Lithium Batteries","authors":"Peng Lei, Gang Wu, Hong Liu, Xiang Qi, Meng Wu, Dabing Li, Yang Li, Lei Gao, Ce-Wen Nan, Li-Zhen Fan","doi":"10.1002/aenm.202405760","DOIUrl":null,"url":null,"abstract":"The recently emerged chloride solid electrolytes have garnered significant attention due to their superior ionic conductivity, wide electrochemical stability window, and exceptional compatibility with high-voltage oxide cathodes. Nevertheless, the currently cost-effective Zr-based chloride solid electrolytes face significant challenges, including low ionic conductivity and poor moisture stability. Herein, a versatile Zn<sup>2+</sup>-doped Zr-based chloride electrolyte is presented, designed to meet the aforementioned requirements. The optimized Li<sub>2.4</sub>Zr<sub>0.8</sub>Zn<sub>0.2</sub>Cl<sub>6</sub> exhibits an improved ionic conductivity of 1.13 mS cm<sup>−1</sup> at 30 °C. Simultaneously, the Li<sub>2.4</sub>Zr<sub>0.8</sub>Zn<sub>0.2</sub>Cl<sub>6</sub> also demonstrates impressive moisture stability, maintaining its structural integrity after exposure to humid air. The mechanism underlying the enhanced moisture stability of Li<sub>2.4</sub>Zr<sub>0.8</sub>Zn<sub>0.2</sub>Cl<sub>6</sub> is further elucidated by density functional theory calculations. Most notably, whether coupled with LiCoO<sub>2</sub> or LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> cathodes, Li<sub>2.4</sub>Zr<sub>0.8</sub>Zn<sub>0.2</sub>Cl<sub>6</sub>-based all-solid-state batteries demonstrate exceptional cycling stability and rate performance. This high ionic conduction and moisture-resistant chloride electrolyte holds great promise for significantly advancing the commercialization of all-solid-state lithium batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"21 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405760","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recently emerged chloride solid electrolytes have garnered significant attention due to their superior ionic conductivity, wide electrochemical stability window, and exceptional compatibility with high-voltage oxide cathodes. Nevertheless, the currently cost-effective Zr-based chloride solid electrolytes face significant challenges, including low ionic conductivity and poor moisture stability. Herein, a versatile Zn2+-doped Zr-based chloride electrolyte is presented, designed to meet the aforementioned requirements. The optimized Li2.4Zr0.8Zn0.2Cl6 exhibits an improved ionic conductivity of 1.13 mS cm−1 at 30 °C. Simultaneously, the Li2.4Zr0.8Zn0.2Cl6 also demonstrates impressive moisture stability, maintaining its structural integrity after exposure to humid air. The mechanism underlying the enhanced moisture stability of Li2.4Zr0.8Zn0.2Cl6 is further elucidated by density functional theory calculations. Most notably, whether coupled with LiCoO2 or LiNi0.8Mn0.1Co0.1O2 cathodes, Li2.4Zr0.8Zn0.2Cl6-based all-solid-state batteries demonstrate exceptional cycling stability and rate performance. This high ionic conduction and moisture-resistant chloride electrolyte holds great promise for significantly advancing the commercialization of all-solid-state lithium batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Gradient Structural Design Inducing Rocksalt Interface and P2/P3 Biphasic Bulk for Layered Oxide Cathode with Prolonged Sodium Ion Storage Bioinspired Interfacial Design of Robust Aramid Nanofiber Composite Films for High-Performance Moisture-Electric Generators Reliable Sulfur Cathode Design for All-Solid-State Lithium Metal Batteries Based on Sulfide Electrolytes Scalable, Light Rechargeable Energy Storage Based on Osmotic Effects and Photochemical Reactions in a Hair-Thin Filament Activating Inert Palmeirite Through Co Local-Environment Modulation and Spin Electrons Rearrangement for Superior Oxygen Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1