{"title":"Surface Double Dendritic Magnetic Microfibrils for Rapid Isolation and Proteomic Profiling of Extracellular Vesicles from Microliters of Biofluids","authors":"Wenya Chang, Yuhan Cai, Jie Sun, Yuanyuan Deng, Yu Li, Likai Xing, Zulihabire Simayijiang, Zhongze Gu, Zhuoying Xie","doi":"10.1021/acsnano.4c18711","DOIUrl":null,"url":null,"abstract":"The extracellular vesicles (EVs) are crucial for intercellular communication, and their proteomic analysis offers significant insights into their functions, although rapid and efficient analysis in trace biofluids is challenging due to their low abundance and potential protein loss. This study developed functionalized double dendritic magnetic microfibrils (fDDMMs) for efficient isolation and proteomic analysis of EVs from microliter biofluids. The fDDMMs possess dendritic mesoporous silica shell and magnetic Fe<sub>3</sub>O<sub>4</sub> core, with bifunctional groups, Ti ions and R8 cell-penetrating peptide, grafted on the surface by dendritic molecules for enhanced EV capture. The multifunctional properties, including dynamic magnetic mixing and accelerated protein digestion, streamline the proteomic sample preparation process. The results demonstrated that fDDMMs enabled the rapid batch separation and proteomic sample preparation of EVs from 1 μL of plasma samples and 100 μL of tumor organoid culture medium. The rapid EV isolation and proteomic profiling approach holds great potential for liquid biopsy and personalized medicine with tiny clinic biofluids.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"24 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18711","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The extracellular vesicles (EVs) are crucial for intercellular communication, and their proteomic analysis offers significant insights into their functions, although rapid and efficient analysis in trace biofluids is challenging due to their low abundance and potential protein loss. This study developed functionalized double dendritic magnetic microfibrils (fDDMMs) for efficient isolation and proteomic analysis of EVs from microliter biofluids. The fDDMMs possess dendritic mesoporous silica shell and magnetic Fe3O4 core, with bifunctional groups, Ti ions and R8 cell-penetrating peptide, grafted on the surface by dendritic molecules for enhanced EV capture. The multifunctional properties, including dynamic magnetic mixing and accelerated protein digestion, streamline the proteomic sample preparation process. The results demonstrated that fDDMMs enabled the rapid batch separation and proteomic sample preparation of EVs from 1 μL of plasma samples and 100 μL of tumor organoid culture medium. The rapid EV isolation and proteomic profiling approach holds great potential for liquid biopsy and personalized medicine with tiny clinic biofluids.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.